簡易檢索 / 詳目顯示

研究生: 吳慶應
Wu, Chin-In
論文名稱: 奈米級有機薄膜之電特性探討
The Investigations on the Electrical Characteristics of Nano-Scale Organic Thin Films
指導教授: 朱聖緣
Chu, Sheng Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 79
中文關鍵詞: 有機
外文關鍵詞: Organic, AlQ3, NPB
相關次數: 點閱:51下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在1987,曾氏等人在柯達實驗室發現了有機材料的發光現象,由於材料的特性影響,我們可以製作出奈米級的發光二極體。在簡單的三明治結構中,一般我們使用NPB為電洞傳輸層,ALQ3為電子傳輸層及發光層。本文中,發現電壓巔峰值會隨厚度增加而增加,而所定義的崩潰電壓一樣會隨著厚度的增加而增加。在較薄的元件動作時,穿透電流為主導的電流,較厚的元件則為飄移電流所主導,另外,電流的數值會與介面的能障高低相關。除此以外,也發現了一個特殊的現象就是在ITO/NPB(40nm)/Al的元件中,會有低電流的產生,這部分的真正原因並不清楚,仍有待研究。除了上述因素外,外加電場也會影響元件的電特性,在ALQ3的部分,發現反向偏壓時候,會有電壓遞減的現象。但是在順向偏壓時,卻會隨著厚度增加而逐漸飽和。

    Since Tang and Van Slyke reported efficient electroluminescence from a bilayer organic device in 1987, organic light emitting devices (OLEDs) have attracted great attention due to their potential toward the fabrication of large-area displays. To achieve efficient electroluminescence, OLEDs based on some molecules, in general, have separate layers of a hole transport material (HTM) and an emitting electron transport material (ETM). Naphtyl-substituted benzidine derivative (NPB) and tris (8-hydroxyquinoline) aluminum (AlQ3) are often been used as a HTM and an emitting ETM.

    In this study, we try to deposit nano-scaled NPB and AlQ3 using a thermal evaporation system, separately. In simple sandwich structure, ITO/organic/Al, we try to investigate the electrical (I-V) characteristics of these organic thin films. The experimental results for NPB films show that the peak voltage (the voltage at which the current reaches its maximum values) increases with increasing the thickness of the organic films at forward bias. On the other hand, it also shows that the breakdown voltage (the voltage at which the current reaches zero value) increases with increasing the thickness as operating at reverse bias. As the thickness of the device is thin, the dominated current is the tunneling current. On other hand, as the thickness is thicker, the dominated current is the drift current. The current is influenced by the barrier of the interface energy. We found a peculiar image of low current in ITO/NPB (40 nm)/ Al device and we do not clear that the real cause. It should be studied for more research. On the other hand, the I-V characteristics of the devices will also be affected by the external electrical field.

    As for the devices consisted of AlQ3, the electrical field decreases with increasing the thickness of the organic films at reversed bias and increases with increasing the thickness and finally saturates at forward bias.

    Abstract (in Chinese) 4 Abstract (in English) 5 Content Figure Captions 7 Chapter 1 簡介 9 Chapter 2 理論與論文回顧 11 2-1 發光理論 11 2-2 單層傳輸理論 13 2-2-1 單載子單層結構 13 2-2-2 雙載子單層結構 14 2-2-3 傳輸理論 14 2-3 電特性理論推導 16 2-3-1電荷限制理論 16 2-3-2單載子主導理論 19 2-4 元件老化理論 23 Chapter 3 實驗設備與系統 25 3-1 研究目的 25 3-2 研究所用材料 27 3-3 基板清洗方法 28 3-4 真空蒸鍍系統 29 3-4-1 系統設計 29 3-4-2 系統清理 30 3-5 成長製程 31 3-6 量測系統 32 Chapter 4 結果與討論 33 4-1 單層單載子結構 33 4-1-1 實驗設計 34 4-1-2 結果討論 34 4-2 單層雙載子結構 36 4-2-1 實驗設計 36 4-2-2 結果討論 37 Chapter 5 結論與未來展望 40 5-1 結論 40 5-2 未來展望 41 References 42

    1. C. W. Tang and S. A. VanSlyke Appl. Phys. Lett. 51 ,913, 1987
    2. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Das Santos, J. L. Bre´das, M. Lo¨gdlund, and W. R. Salaneck, Nature ~London! 397, 121 ~1999.
    3. Y. Enami,a) G. Meredith, and N. Peyghambarian, M. Kawazu, A. K.-Y. Jen Appl. Phys. Lette.82, 490, 2003
    4. A. Salleo,a) M. L. Chabinyc, M. S. Yang,b) and R. A. Street Appl. Phys. Lette.81, 4383, 2002
    5. Young-Geun Park, Hea-Yeon Lee, Hidekazu Tanaka, Hitoshi Tabata, and Tomoji Kawaia), Appl. Phys. Lette.79, 1048, 2001
    6. R. A. Streeta) and A. Salleo, Appl. Phys. Lette.81, 2887, 2002
    7. G. A. Turnbull, P. Andrew and W. L. Barnes, I. D. W. Samuela) Appl. Phys. Lette. 82, 313 ,2003
    8. F. Ghebremichaela) Appl. Phys. Lette.81, 2971, 2002
    9. M. Pope, H.P. Kallmann and P.J. Magnante, J. Chem. Phys., vol. 24, 2042 1963
    10.L.C. Picciolo, H. Murata, and Z. H. Kafafi Appl. Phys. Lette.78, 2378, 2001
    11. P.M. Boresenberger, W. Mey, A. Chowdry, Appl. Phys. 49, 275, 1978
    12. Baijun Chen, Chun-sing Lee, Shuit-tong Lee, Patrick Webb, Yan-cheong Chan, William Gambling, He Tian and Weihong ZhuJpn. J. Appl. Phys. Vol.39 (2000) pp.1190-1192 : (F02,J06)
    13.M. Stobel, J. Staudigel, F. Steuber, J. Blassing, and J. Simmerer, A. Winnacker Appl. Phys. Lette. 76, 115, 2000
    14.M. A. Lampert and P. Mark, Current Injection in Solids(Academic,New York,1970)
    15. J. C. Scott, S. Karg, S. A. Carter J. Appl. Phys. 82, 1454, 1997
    16.R. H. Parmenter and W. Ruppel J. Appl. Phys. 30,1548, 1959
    17. C. C. Tsou, C. F. Sung, M. Yakoyama, S. H. Su IEDMS 2000, 265
    18. T. Shimada, K. Aunguchi, K. Koma Appl. Phys. Lette. 72, 1869, 1998
    19. Z. B. Deng, X. M. Ding, S. T. Lee, W. A. Gambling Appl. Phys. Lette. 74, 2227,1999
    20. L. M. Do, E. M. Han, Y. Niidome, M. Fujihira, T. Kanno, S. Yoshida, A. Maeda, A. J. Ikushima J. Appl. Phys. 76, 5118,1994
    21. Masamichi, Fujihira, Lee Mi Do, Amane Koike, Eun-Mi Han Appl. Phys. Lette. 68, 1787,1996
    22. Z. Q. Gao, W. Y. Lai, T. C. Wong, C. S. Lee, I. Bello, and S. T. Lee Appl. Phys. Lette. 3269, 1999
    23.H. Aziz,and Z. D. Popovic, Appl. Phys. Lette. 2180,2002
    24.M. A. Diaz-Garcia, S.F. De Avila, and M.G. Kuzyk, Appl. Phys. Lette. 3924,2002
    25.H. Aziz, Z. D. Popovic, and Nan-Xing Hu, Appl. Phys. Lette.370,2002
    26.Z. Y. Xie, L. S. Hung, and S. T. Lee, Appl. Phys. Lette. 1048, 2001
    27.Tae-Woo Lee and O Ok Park, Dong Hoon Choi, Appl. Phys. Lette.424,2002
    28.J. Thompson, R. I. R. Blyth,M. Mazzeo, M. Anni, G. Gigli, and R.Cingolani, Appl. Phys. Lette.560,2001
    29.J. Szmytkowski, W. Stampor, and J. Kalinowski, Z. H. Kafafi, Appl. Phys. Lette. 1465,2002
    30.S. Bartkiewicz and A. Miniewicz, B. Sahraoui, F. Kajzar, Appl. Phys. Lette. 3705,2002
    31.M. Raja, G. C. R. Lioyd, N. Sedghi, and W. Eccleston, R. Di Lucrezia and S. J. Higgins, J. Appl. Phys. 92,1441,2002
    32.W. P. Li, Y. W. Tang, S. S. Guo, D. H. Wang, G. Yang, R. H. Wang, and X. Z. Zhao, Appl. Phys. Lette. 2136, 2003
    33.Yasunori Kijima, Nobutoshi Asai, and Shin-ichiro Tamura, Jpn. J. Appl. Phys. 38,5274,1999
    34.L. P. Ma, J. Liu, and Y. Yang, Appl. Phys. Lette. 80, 2997, 2002
    35. Soonnam Kwon, Shin Cheul Kim, Youngkyoo Kim, Jae-Gyoung Lee,Sunwook Kim and Kwangho Jeong, Appl. Phys. Lette. 4595,2001
    36. Dongge Ma, C. S. Lee, S. T. Lee and L. S. Hung, Appl. Phys. Lette. 3641,2002
    37. Beeling Low, Furong Zhu, Keran Zhang and Soojin Chua, Appl. Phys. Lette. 4659, 2002
    38. V. Ka ukauskas, H. Tzeng, and S. A. Chen, Appl. Phys. Lett. 80, 2017 ,2002
    39.Shigeki NAKA, Hiroyuki OKADA, Hiroyoshi ONNAGAWA, Junji KIDO and Tetsuo TSUTSU, Jpn. J. Appl. Phys. 38, L1252, 1999
    40.Takeshi Yasuda, Yoshihisa YAMAGUCHI, De-Chun ZOU and Tetsuo TSUTSUI, Jpn. J. Appl. Phys. 41, 5626, 2002

    下載圖示 校內:2008-06-19公開
    校外:2013-06-19公開
    QR CODE