| 研究生: |
吳慶應 Wu, Chin-In |
|---|---|
| 論文名稱: |
奈米級有機薄膜之電特性探討 The Investigations on the Electrical Characteristics of Nano-Scale Organic Thin Films |
| 指導教授: |
朱聖緣
Chu, Sheng Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 有機 |
| 外文關鍵詞: | Organic, AlQ3, NPB |
| 相關次數: | 點閱:51 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在1987,曾氏等人在柯達實驗室發現了有機材料的發光現象,由於材料的特性影響,我們可以製作出奈米級的發光二極體。在簡單的三明治結構中,一般我們使用NPB為電洞傳輸層,ALQ3為電子傳輸層及發光層。本文中,發現電壓巔峰值會隨厚度增加而增加,而所定義的崩潰電壓一樣會隨著厚度的增加而增加。在較薄的元件動作時,穿透電流為主導的電流,較厚的元件則為飄移電流所主導,另外,電流的數值會與介面的能障高低相關。除此以外,也發現了一個特殊的現象就是在ITO/NPB(40nm)/Al的元件中,會有低電流的產生,這部分的真正原因並不清楚,仍有待研究。除了上述因素外,外加電場也會影響元件的電特性,在ALQ3的部分,發現反向偏壓時候,會有電壓遞減的現象。但是在順向偏壓時,卻會隨著厚度增加而逐漸飽和。
Since Tang and Van Slyke reported efficient electroluminescence from a bilayer organic device in 1987, organic light emitting devices (OLEDs) have attracted great attention due to their potential toward the fabrication of large-area displays. To achieve efficient electroluminescence, OLEDs based on some molecules, in general, have separate layers of a hole transport material (HTM) and an emitting electron transport material (ETM). Naphtyl-substituted benzidine derivative (NPB) and tris (8-hydroxyquinoline) aluminum (AlQ3) are often been used as a HTM and an emitting ETM.
In this study, we try to deposit nano-scaled NPB and AlQ3 using a thermal evaporation system, separately. In simple sandwich structure, ITO/organic/Al, we try to investigate the electrical (I-V) characteristics of these organic thin films. The experimental results for NPB films show that the peak voltage (the voltage at which the current reaches its maximum values) increases with increasing the thickness of the organic films at forward bias. On the other hand, it also shows that the breakdown voltage (the voltage at which the current reaches zero value) increases with increasing the thickness as operating at reverse bias. As the thickness of the device is thin, the dominated current is the tunneling current. On other hand, as the thickness is thicker, the dominated current is the drift current. The current is influenced by the barrier of the interface energy. We found a peculiar image of low current in ITO/NPB (40 nm)/ Al device and we do not clear that the real cause. It should be studied for more research. On the other hand, the I-V characteristics of the devices will also be affected by the external electrical field.
As for the devices consisted of AlQ3, the electrical field decreases with increasing the thickness of the organic films at reversed bias and increases with increasing the thickness and finally saturates at forward bias.
1. C. W. Tang and S. A. VanSlyke Appl. Phys. Lett. 51 ,913, 1987
2. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Das Santos, J. L. Bre´das, M. Lo¨gdlund, and W. R. Salaneck, Nature ~London! 397, 121 ~1999.
3. Y. Enami,a) G. Meredith, and N. Peyghambarian, M. Kawazu, A. K.-Y. Jen Appl. Phys. Lette.82, 490, 2003
4. A. Salleo,a) M. L. Chabinyc, M. S. Yang,b) and R. A. Street Appl. Phys. Lette.81, 4383, 2002
5. Young-Geun Park, Hea-Yeon Lee, Hidekazu Tanaka, Hitoshi Tabata, and Tomoji Kawaia), Appl. Phys. Lette.79, 1048, 2001
6. R. A. Streeta) and A. Salleo, Appl. Phys. Lette.81, 2887, 2002
7. G. A. Turnbull, P. Andrew and W. L. Barnes, I. D. W. Samuela) Appl. Phys. Lette. 82, 313 ,2003
8. F. Ghebremichaela) Appl. Phys. Lette.81, 2971, 2002
9. M. Pope, H.P. Kallmann and P.J. Magnante, J. Chem. Phys., vol. 24, 2042 1963
10.L.C. Picciolo, H. Murata, and Z. H. Kafafi Appl. Phys. Lette.78, 2378, 2001
11. P.M. Boresenberger, W. Mey, A. Chowdry, Appl. Phys. 49, 275, 1978
12. Baijun Chen, Chun-sing Lee, Shuit-tong Lee, Patrick Webb, Yan-cheong Chan, William Gambling, He Tian and Weihong ZhuJpn. J. Appl. Phys. Vol.39 (2000) pp.1190-1192 : (F02,J06)
13.M. Stobel, J. Staudigel, F. Steuber, J. Blassing, and J. Simmerer, A. Winnacker Appl. Phys. Lette. 76, 115, 2000
14.M. A. Lampert and P. Mark, Current Injection in Solids(Academic,New York,1970)
15. J. C. Scott, S. Karg, S. A. Carter J. Appl. Phys. 82, 1454, 1997
16.R. H. Parmenter and W. Ruppel J. Appl. Phys. 30,1548, 1959
17. C. C. Tsou, C. F. Sung, M. Yakoyama, S. H. Su IEDMS 2000, 265
18. T. Shimada, K. Aunguchi, K. Koma Appl. Phys. Lette. 72, 1869, 1998
19. Z. B. Deng, X. M. Ding, S. T. Lee, W. A. Gambling Appl. Phys. Lette. 74, 2227,1999
20. L. M. Do, E. M. Han, Y. Niidome, M. Fujihira, T. Kanno, S. Yoshida, A. Maeda, A. J. Ikushima J. Appl. Phys. 76, 5118,1994
21. Masamichi, Fujihira, Lee Mi Do, Amane Koike, Eun-Mi Han Appl. Phys. Lette. 68, 1787,1996
22. Z. Q. Gao, W. Y. Lai, T. C. Wong, C. S. Lee, I. Bello, and S. T. Lee Appl. Phys. Lette. 3269, 1999
23.H. Aziz,and Z. D. Popovic, Appl. Phys. Lette. 2180,2002
24.M. A. Diaz-Garcia, S.F. De Avila, and M.G. Kuzyk, Appl. Phys. Lette. 3924,2002
25.H. Aziz, Z. D. Popovic, and Nan-Xing Hu, Appl. Phys. Lette.370,2002
26.Z. Y. Xie, L. S. Hung, and S. T. Lee, Appl. Phys. Lette. 1048, 2001
27.Tae-Woo Lee and O Ok Park, Dong Hoon Choi, Appl. Phys. Lette.424,2002
28.J. Thompson, R. I. R. Blyth,M. Mazzeo, M. Anni, G. Gigli, and R.Cingolani, Appl. Phys. Lette.560,2001
29.J. Szmytkowski, W. Stampor, and J. Kalinowski, Z. H. Kafafi, Appl. Phys. Lette. 1465,2002
30.S. Bartkiewicz and A. Miniewicz, B. Sahraoui, F. Kajzar, Appl. Phys. Lette. 3705,2002
31.M. Raja, G. C. R. Lioyd, N. Sedghi, and W. Eccleston, R. Di Lucrezia and S. J. Higgins, J. Appl. Phys. 92,1441,2002
32.W. P. Li, Y. W. Tang, S. S. Guo, D. H. Wang, G. Yang, R. H. Wang, and X. Z. Zhao, Appl. Phys. Lette. 2136, 2003
33.Yasunori Kijima, Nobutoshi Asai, and Shin-ichiro Tamura, Jpn. J. Appl. Phys. 38,5274,1999
34.L. P. Ma, J. Liu, and Y. Yang, Appl. Phys. Lette. 80, 2997, 2002
35. Soonnam Kwon, Shin Cheul Kim, Youngkyoo Kim, Jae-Gyoung Lee,Sunwook Kim and Kwangho Jeong, Appl. Phys. Lette. 4595,2001
36. Dongge Ma, C. S. Lee, S. T. Lee and L. S. Hung, Appl. Phys. Lette. 3641,2002
37. Beeling Low, Furong Zhu, Keran Zhang and Soojin Chua, Appl. Phys. Lette. 4659, 2002
38. V. Ka ukauskas, H. Tzeng, and S. A. Chen, Appl. Phys. Lett. 80, 2017 ,2002
39.Shigeki NAKA, Hiroyuki OKADA, Hiroyoshi ONNAGAWA, Junji KIDO and Tetsuo TSUTSU, Jpn. J. Appl. Phys. 38, L1252, 1999
40.Takeshi Yasuda, Yoshihisa YAMAGUCHI, De-Chun ZOU and Tetsuo TSUTSUI, Jpn. J. Appl. Phys. 41, 5626, 2002