簡易檢索 / 詳目顯示

研究生: 周彥成
Chou, Yang-Cheng
論文名稱: 具多環交疊型感應耦合結構之非接觸式電動車充電平台
Contactless EV Charging Platform with Overlapped Multi-Ring Inductive Coupled Structure
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 98
中文關鍵詞: 電動車多環交疊型耦合結構非接觸式充電平台
外文關鍵詞: Electric vehicles, Overlapped multi-ring coupled structure, Contactless charging platform
相關次數: 點閱:112下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製多環交疊型感應耦合結構於非接觸式電動車充電平台,其特點為將多個環形線圈以交疊的方式繞製成初級側平台,可於較少磁通抵消程度下而有效改善磁通的分佈,使得充電平台可提供均勻磁場,增加可充電之區域,並於初、次級側皆適當的加入鐵芯,提高電動車對感應充電平台的間距與錯位容忍度。文中使用有限元素模擬軟體Maxwell輔助設計感應耦合結構,依據模擬結果選用合適的結構繞製方式,並以耦合係數、未補償電能拾取功率與鐵芯利用率設計耦合結構線圈參數與初、次級側鐵芯的使用,提升整體電能傳輸效率。最後經實驗驗證,充電平台於氣隙11 cm下其電能傳輸效率約為86.5%,且在平台相對最差錯位下效率為70.4%,最大傳輸功率為3.3 kW。

    This thesis aims to study on overlapped multi-ring inductive coupled structure for contactless EV charging platform. The primary which comprised by several coil rings through overlapping wounded is proposed for improving the distribution of flux with lower flux counteraction. Therefore, the charging platform could provide the uniform magnetic field which extend charging zone. Both of primary and secondary with suitable ferrite for flux guidance to have good tolerance to air gap and misalignment. Finite-element analysis modeling Maxwell is used to aided design inductive coupled structure. Depending on the simulation results, the appropriate way of wound structure was chosen, designing specification of coupled structure coil by couple coefficient, pick-up uncompensated power and utilization of ferrite. Finally, the experimental verification, the transmission efficiency is about 86.5% with an 11 cm air gap and 70.4% with relatively worst position of platform. The highest power of load is 3.3 kW.

    目錄 頁數 中文摘要 I 英文摘要 II 英文延伸摘要 III 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 研究目的與背景 1 1-2 非接觸式感應充電技術之應用 3 1-3 研究方法 7 1-4 論文大綱 8 第二章 非接觸感應耦合原理 9 2-1 前言 9 2-2 感應線圈基本原理 9 2-3 變壓器等效模型 11 2-3-1 鬆耦合變壓器 11 2-3-2 互感與耦合係數量測 12 2-4 感應耦合結構 13 2-5 磁性材料 19 2-6 電池基本特性與充電策略 20 2-6-1 二次電池種類 20 2-6-2 電池充電策略 22 第三章 多環交疊型感應耦合結構分析 25 3-1 前言 25 3-2 多環交疊型感應耦合結構模擬與分析 25 3-2-1 線圈交疊模擬分析 25 3-2-2 多環交疊型感應耦合結構之尺寸選擇 28 3-2-3 次級側線圈磁通導引分析與設計 31 3-2-4 初級側線圈磁通導引分析與設計 41 3-3 諧振電路分析 47 3-3-1 基本諧振電路 47 3-3-2 次級側諧振電路阻抗分析 48 3-3-3 反射阻抗分析 49 3-3-4 初級側諧振電路阻抗分析 51 3-3-5 實際諧振阻抗分析 52 第四章 多環交疊型感應充電平台架構 55 4-1 前言 55 4-2 多環交疊型感應充電平台電路架構 55 4-3 感應耦合結構繞製與量測 56 4-3-1 多環交疊型感應耦合結構實體圖與繞製參數 56 4-3-2 感應耦合結構互感比較 58 4-3-3 諧振電路選擇 60 4-4 充電平台電源側電路架構 61 4-4-1 全橋串聯諧振變流器 61 4-4-2 全橋串聯諧振變流器用驅動電路 64 4-5 充電平台載具側電路架構 66 4-5-1 整流濾波電路 66 4-5-2 降壓式電壓轉換器 66 4-5-3 電晶片控制電路 69 4-5-4 電池充電電路 71 4-6 多環交疊型感應充電平台設計流程 74 第五章 模擬與實驗結果 77 5-1 前言 77 5-2 Simplis電路模擬 77 5-3 多環交疊型感應充電平台電路規格與參數 79 5-4 實驗結果與討論 80 第六章 結論與未來研究方向 91 6-1 結論 91 6-2 未來研究方向 92 參考文獻 93

    [1] T. Yasuda, I. Norigoe, S. Abe, and Y. Kaneko, “Contactless charging system,” in Proc. IEEE INTELEC’11, 2011, pp. 1-7.
    [2] C. Y. Huang, J. T. Boys, G. A. Covic, and M. Budhia, “Practical considerations for designing IPT system for EV battery charging,” in Proc. IEEE VPPC’09, 2009, pp. 402-407.
    [3] A. Zaheer, D. Kacprzak, and G. A. Covic, “A bipolar receiver pad in a lumped IPT system for electric vehicle charging applications,” in Proc. IEEE ECCE’12, 2012, pp. 283-290.
    [4] G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3389-3391, Oct. 2006.
    [5] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, Dec. 2006.
    [6] J. Hun, S. W. Lee, W. Y. Lee, G. H. Cho, and C. T. Rim, “Narrow-width inductive power transfer system for online electrical vehicles,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3666-3679, Dec. 2011.
    [7] J. M. Miller, O. C. Onar, C. White, S. Campbell, C. Coomer, L. Seiber, R. Sepe, and A. Steyerl, “Demonstrating dynamic wireless charging of an electric vehicle: the benefit of electrochemical capacitor smoothing,” IEEE Trans. Power Electron. Mag., vol. 1, no. 1, pp. 12-24, Mar. 2014.
    [8] A. Zaheer, M. Budhia, D. Kacprzak, and G. A. Covic, “Magnetic design of a 300 W under-floor contactless power transfer system,” in Proc. IEEE IECON’11, 2011, pp. 1408-1413.
    [9] S. Raabe, G. A. J. Elliott, G. A. Covic, and J. T. Boys, “Multiphase pickups for large lateral tolerance contactless power-transfer systems,” IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1590-1598, May 2010.
    [10] G. Park, S. Lee, G. H. Cho, S. Y. Choi, and C. T. Rim, “Two-dimensional inductive power transfer system for mobile robots using evenly displaced multiple pick-ups,” IEEE Trans. Ind. Appl., vol. 1, no. 1, pp. 12-24, Jan. 2014.
    [11] S. Raabe and G. A. Covic, “Practical design considerations for contactless power transfer quadrature pick-ups,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 400-409, Jan. 2013.
    [12] X. Liu, P. W. Chen, and S. Y. R. Hui, “Finite element simulation of a universal contactless battery charging platform,” in Proc. IEEE APEC’05, 2005, pp. 1927-1932.
    [13] W. C. Ho and S. Y. R. Hui, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, May 2005.
    [14] W. X. Zhong, X. Liu, and S. Y. R. Hui, “A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4136-4144, Sep. 2011.
    [15] U. M. Jow and M. Ghovanloo, “Geometrical design of a scalable overlapping planar spiral coil array to generate a homogeneous magnetic field,” IEEE Trans. Magn., vol. 49, no. 6, pp. 2933-2944, Jun. 2013.
    [16] F. Musavi, M. Edington, and W. Eberle, “Wireless power transfer a survey of EV battery charging technologies,” in Proc. IEEE ECCE’12, 2012, pp. 1804-1810.
    [17] K. Kobayashi, T. Pontefract, Y. Kamiya, and Y. Daisho, “Development and performance evaluation of a non-contact rapid charging Inductive power supply system for electric micro-bus,” in Proc. IEEE VPPC’11, 2011, pp 1-6.
    [18] J. Schneider. (2012, Jan). SAE J2954 overview and path forward. U.S.A. [Online].Available: http://www.sae.org/smartgrid/sae-j2954-status_1-20
    12.pdf.
    [19] G. A. Covic and O. H. Stielau, “Design of loosely coupled inductive power transfer systems,” in Proc. IEEE PowerCon, 2000, pp. 85-90.
    [20] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, Feb. 2004.
    [21] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
    [22] C. Y. Huang, J. T. Boys, and G. A. Covic, “LCL pickup circulating current controller for inductive power transfer systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2081-2093, Apr. 2013.
    [23] C. S. Wang, G. A. Covic, and O. H. Stielau, “A investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Power Electron., vol. 9, no. 4, pp. 995-1002, Jul. 2004.
    [24] X. Liu, W. M. Ng, C. K. Lee, and S. Y. R. Hui, “Optimal operation of contactless transformers with resonance in secondary circuits,” in Proc. IEEE APEC’08, 2008, pp. 645-650.
    [25] M. Soljacic, P.Fisher, A. Kurs, A. Karalis, R. Moffatt, and J. D. Joannopoulos, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, pp. 83-85, 2007.
    [26] “WiT3300,” WiTricityI nc., U.S.A., [online]. Available: http://www.witr
    icity.com/products/wit-3300/
    [27] M. Budhia, J. T. Boys, and G. A. Covic, “Design and optimization of circular magnetic structures for lumped inductive power transfer systems,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3096-3108, Nov. 2011.
    [28] M. Budhia, J. T. Boys, and G. A. Covic, “Design and optimisation of magnetic structures for lumped inductive power transfer systems,” in Proc. IEEE ECCE’09, 2009, pp. 2081-2088.
    [29] M. L. G. Kissin, D. Kacprzak, N. Clausen, H. Hao, and G. A. Covic, “A bipolar primary pad topology for EV stationary charging and highway power by inductive coupling,” in Proc. IEEE ECCE’11, 2011, pp. 1832-1838.
    [30] M. Budhia, G. A. Covic, J. T. Boys, and C. Y. Huang, “Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 318-328, Jan. 2013.
    [31] M. Budhia, J. T. Boys, and G. A. Covic, “Development and evaluation of single sided flux couplers for contactless electric vehicle charging,” in Proc. IEEE ECCE’11, 2011, pp. 614-621.
    [32] G. A. Covic and J. T. Boys, “Modern trends in inductive power transfer for transportation applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 1, no. 1, pp. 28-41, Mar. 2013.
    [33] “Wireless charged electric buses,” APS, [online]. Available: http://www.
    physicscentral.com/explore/action/electric-bus.cfm
    [34] “Utah Transit Authority Feeder Shuttle,” Wireless Advanced Vehicle El-
    ectrification Inc., U.S.A. [online]. Available: http://www.waveipt.com/p
    ortfolio
    [35] 賴景明,應用四線圈式多環同軸型感應耦合結構於大間隙無線電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2012年。
    [36] 劉杰諠,電動載具充電用非接觸式編織型感應饋電系統之研製,國立成功大學電機工程學系碩士論文,2012年。
    [37] 趙善任,應用新型三相感應耦合結構於非接觸式電動載具充電平台之研究,國立成功大學電機工程學系碩士論文,2013年。
    [38] S. Lukic and Z. Pantic, “Cutting the cord static and dynamic inductive wireless charging of electric vehicles,” IEEE Trans. Electrification Mag., vol. 1, no. 13, pp. 57-64, Sep. 2013.
    [39] S. Hasanzadeh, S. V. Zadeh, and A. H. Isfahani, “Optimization of a contactless power transfer system for electric vehicles,” IEEE Trans. Veh. Technol., vol. 61, no. 8, pp. 3566-3573, Oct. 2012.
    [40] J. L. Villa, J. Sallan, J. F. S. Osorio, and A. Llombart, “High misalignment tolerant compensation topology for ICPT systems,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 945-951, Feb. 2012.
    [41] E. Waffenschmidt, “Free positioning for inductive wireless power system,” in Proc. IEEE ECCE’11, 2011, pp. 3480-3487.
    [42] W. Zhou and H. Ma, “Winding structure and circuit design of contactless power transfer platform,” in Proc. IEEE IECON’08, 2008, pp. 1063-1068.
    [43] A. Zaheer, G. A. Covic, and D. Kacprzak, “A bipolar pad in a 10 kHz, 300W distributed IPT system for AGV applications,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3288-3301, Jul. 2014.
    [44] X. Liu and S. Y. R. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. power Electron., vol. 22, no. 1, pp. 21-29, Jan. 2007.
    [45] 梁適安,磁性元件分析與設計,工研院能資所電力電子實務課程講義,2000年。
    [46] 王志方,磷酸鋰鐵電池之產業概況,IBT,2008年11月。
    [47] 許家興,電動車電池類型與電池基礎介紹,車輛研究資訊,2009年10月。
    [48] UCC2895 Data Sheet, Texas Instruments Inc., 2014.
    [49] IR2110 Data Sheet, International Rectifier Inc., 2005.
    [50] PIC18F4520 Data Sheet, Microchip Technology Inc., 2004.
    [51] 曾百由,微處理器原理與應用組合語言與PIC18微控制器,五南圖書出版公司,台灣,2009年。

    下載圖示 校內:2017-07-30公開
    校外:2017-07-30公開
    QR CODE