簡易檢索 / 詳目顯示

研究生: 華元甫
Hua, Yuan-Fu
論文名稱: 氧化鎵覆蓋層於氮化鋁鎵/氮化鎵異質結構之紫外光三波段光檢測器
AlGaN/GaN Heterostructure with a Ga2O3 Cap Layer Ultraviolet Tri-Band Photodetectors
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 70
中文關鍵詞: 氮化鋁鎵氮化鎵氧化鎵紫外光檢測器
外文關鍵詞: AlGaN, GaN, Ga2O3, UV Photodetectors
相關次數: 點閱:129下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製和分析了氧化鎵覆蓋層於氮化鋁鎵/氮化鎵異質結構之紫外光檢測器。我們藉由許多方式提升拒斥比及降低暗電流以研製三波段紫外光檢測器。
    起初,我們利用爐管熱氧化方式於氮化鋁鎵/氮化鎵異質結構上成長單斜氧化鎵層,並且製作成金半金雙波段光檢測器。成長120 nm厚單斜氧化鎵之光檢測器,其暗電流於1和10 V偏壓下分別為2.05 × 10-9和4.50 × 10-8 A。與無單斜氧化鎵層之光檢測器比較,暗電流可降低約四個數量級。具有120 nm厚單斜氧化鎵之雙波段紫外光檢測器, UV-B對UV-A於1 V偏壓下和UV-A對可見光於10 V偏壓下之拒斥比分別為80.53和311.95。
    接著,我們將不同功函數之金屬應用於電極上。與鈦/鋁電極相比,具有較高功函數之鎳/金電極可降低暗電流,於1和10 V偏壓下分別為1.24 × 10-10和9.44 × 10-10 A。使用鈦/鋁電極和鎳/金電極之光檢測器,UV-C對UV-B於1 V偏壓下之拒斥比分別為8.90和39.54。因此使用鎳/金電極之光檢測器具有第三波段以應用於三波段紫外光檢測器。
    最後,於成長單斜氧化鎵絕緣層時,將金奈米粒子參與其中並可視為催化劑。金奈米粒子可降低暗電流、增加粒子致光散射、增加UV-C對暗電流之電流比及增加UV-C對UV-B之拒斥比。使用鈦/鋁電極和鎳/金電極並具有金奈米粒子之光檢測器, UV-C對UV-B於1 V偏壓下之拒斥比分別為705.19和157.37。因此,使用鈦/鋁電極並具有金奈米粒子之光檢測器,UV-C對UV-B於1 V偏壓下具有最大之拒斥比,其值為705.19;使用鎳/金電極並具有金奈米粒子之光檢測器具有最小之暗電流,於1和10 V偏壓下分別為2.77 × 10-11和3.91 × 10-10 A。於本論文中,使用鈦/鋁電極和鎳/金電極並具有金奈米粒子之光檢測器最適合應用於三波段紫外光檢測器。

    In this thesis, the fabrication and analysis of AlGaN/GaN heterostructure with a Ga2O3 cap layer ultraviolet (UV) photodetectors (PDs) were performed. We enhanced the rejection ratios and reduced the dark current by various methods so as to fabricate tri-band UV PDs.
    First, the growth of β-Ga2O3 layer by furnace oxidation above AlGaN/GaN heterostructure and the fabrication of metal-semiconductor-metal (MSM) dual-band PDs have been reported. The dark current of the PD with a 120-nm-thick β-Ga2O3 layer were 2.05 × 10-9 and 4.50 × 10-8 A under 1 and 10 V applied bias, respectively. Compared to the PD without β-Ga2O3 cap layer, the leakage current could be effectively suppressed over 4 orders of magnitude by a thick β-Ga2O3 layer. The rejection ratios of UV-B to UV-A at 1 V and UV-A to visible light at 10 V of the dual-band UV PD with a 120-nm-thick cap layer were 80.53 and 311.95, respectively.
    Second, we changed the electrodes of PDs with different work function metals. With higher work functions Ni/Au electrodes compared to Ti/Al electrodes, the dark current reduced to 1.24 × 10-10 and 9.44 × 10-10 A under 1 and 10 V applied bias, respectively. The rejection ratios of UV-C to UV-B under 1 V applied bias of the PD with Ti/Al electrodes and Ni/Au electrodes were 8.90 and 39.54, respectively. The PD with Ni/Au electrodes had the third band to cater to tri-band UV PD applications.
    Finally, the β-Ga2O3 insulating layer was grown with Au nanoparticles which served as catalyst. PDs with Au nanoparticles could reduce the dark current, increase the particles-induced light scattering, enhance the current ratio of UV-C to dark current and enhance the rejection ratio of UV-C to UV-B. The rejection ratios of UV-C to UV-B under 1 V applied bias of the PD with Au nanoparticles with Ti/Al electrodes and Ni/Au electrodes were 705.19 and 157.37, respectively. Hence, the PD with Au nanoparticles with Ti/Al electrodes had the largest rejection ratio of UV-C to UV-B under 1 V applied bias of 705.19 while the PD with Au nanoparticles with Ni/Au electrodes had the smallest leakage current of 2.77 × 10-11 and 3.91 × 10-10 A under 1 and 10 V applied bias, respectively. The PD with Au nanoparticles with Ti/Al electrodes and Ni/Au electrodes were the best choices to cater to tri-band UV PD applications in this thesis.

    摘要 I Abstract III 誌謝 V Contents VI Figure Captions VIII Table Captions X Chapter 1. Introduction 1 1.1 Background and Motivation 1 1.1.1 Ultraviolet (UV) Photodetectors (PDs) 1 1.1.2 AlGaN/GaN Heterostructure 2 1.1.3 β-Ga2O3 3 1.2 Organization of the Thesis 4 References 5 Chapter 2. Fabrication and Measurement Apparatus 10 2.1 Field-Emission Scanning Electron Microscope 10 2.2 Energy-Dispersive X-Ray Spectroscopy 10 2.3 X-Ray Diffraction Analysis (XRD) 11 2.4 Measurement system 12 References 13 Chapter 3. Growth of Ga2O3 Cap Layer and the Fabrication of Ultraviolet Dual-Band Photodetectors 16 3.1 Introduction 16 3.2 Experiments 17 3.3 Results and Discussion 19 3.4 Summary 21 References 23 Chapter 4. AlGaN/GaN Heterostructure with a Ga2O3 Cap Layer Ultraviolet Photodetectors with Different Electrodes 33 4.1 Introduction 33 4.2 Experiments 34 4.3 Results and Discussion 35 4.4 Summary 37 References 38 Chapter 5. Growth of Ga2O3 Cap Layer with Au Nanoparticles and the Fabrication of Ultraviolet Tri-Band Photodetectors 46 5.1 Introduction 46 5.2 Experiments 47 5.3 Results and Discussion 49 5.4 Summary 53 References 55 Chapter 6. Conclusions and Future Works 67 6.1 Conclusions 67 6.2 Future Works 68

    References in Chapter 1
    [1] T. Oshima, T. Okuno, N. Arai, N. Suzuki, H. Hino, and S. Fujita, "Flame Detection by a β-Ga2O3-Based Sensor," Jpn. J. Appl. Phys., vol. 48, Jan 2009.
    [2] M. Razeghi, "Short-wavelength solar-blind detectors - Status, prospects, and markets," Proc. IEEE, vol. 90, pp. 1006-1014, Jun 2002.
    [3] E. Monroy, E. Munoz, F. J. Sanchez, F. Calle, E. Calleja, B. Beaumont, et al., "High-performance GaN p-n junction photodetectors for solar ultraviolet applications," Semicond. Sci. Technol., vol. 13, pp. 1042-1046, Sep 1998.
    [4] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, et al., "High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures," Appl. Phys. Lett., vol. 71, pp. 2154-2156, Oct 1997.
    [5] N. Biyikli, I. Kimukin, O. Aytur, and E. Ozbay, "Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high detectivity," IEEE Photonics Technol. Lett., vol. 16, pp. 1718-1720, Jul 2004.
    [6] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, "Anisotropy in detectivity of GaN Schottky ultraviolet detectors: Comparing lateral and vertical geometry," Appl. Phys. Lett., vol. 80, pp. 347-349, Jan 21 2002.
    [7] T. Palacios, E. Monroy, F. Calle, and F. Omnes, "High-responsivity submicron metal-semiconductor-metal ultraviolet detectors," Appl. Phys. Lett., vol. 81, pp. 1902-1904, Sep 2002.
    [8] J. L. Li, Y. Xu, T. Y. Hsiang, and W. R. Donaldson, "Picosecond response of gallium-nitride metal-semiconductor-metal photodetectors," Appl. Phys. Lett., vol. 84, pp. 2091-2093, Mar 2004.
    [9] Y. H. Ahn and J. Park, "Efficient visible light detection using individual germanium nanowire field effect transistors," Appl. Phys. Lett., vol. 91, Oct 2007.
    [10] S. Nakamura, M. Senoh, N. Iwasa, and S.-i. Nagahama, "High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes," Appl. Phys. Lett., vol. 67, pp. 1868-1870, 1995.
    [11] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, "InGaN-GaN multiquantum-well blue and green light-emitting diodes," IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 278-283, Mar-Apr 2002.
    [12] S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, et al., "InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate," Appl. Phys. Lett., vol. 72, pp. 211-213, 1998.
    [13] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. H. Kuo, and S. L. Wu, "AlGaN/GaN Schottky Barrier Photodetector With Multi-MgxNy/GaN Buffer," IEEE Sens. J., vol. 9, pp. 87-92, 2009.
    [14] M. Razeghi and A. Rogalski, "Semiconductor ultraviolet detectors," J. Appl. Phys., vol. 79, pp. 7433-7473, 1996.
    [15] N. Tripathi, J. R. Grandusky, V. Jindal, F. Shahedipour-Sandvik, and L. D. Bell, "AlGaN based tunable hyperspectral detector," Appl. Phys. Lett., vol. 90, p. 231103, 2007.
    [16] F. Xie, H. Lu, D. J. Chen, X. L. Ji, F. Yan, R. Zhang, et al., "Ultra-Low Dark Current AlGaN-Based Solar-Blind Metal-Semiconductor-Metal Photodetectors for High-Temperature Applications," IEEE Sens. J., vol. 12, pp. 2086-2090, 2012.
    [17] C. C. Huang and C. S. Yeh, "GaOOH, and β- and γ-Ga2O3 nanowires: preparation and photoluminescence," New J. Chem., vol. 34, pp. 103-107, 2010.
    [18] S. Geller, "Crystal Structure of beta-Ga2O3," J. Chem. Phys., vol. 33, pp. 676-684, 1960.
    [19] H. S. Qian, P. Gunawan, Y. X. Zhang, G. F. Lin, J. W. Zheng, and R. Xu, "Template-free synthesis of highly uniform α-GaOOH spindles and conversion to α-Ga2O3 and β-Ga2O3," Cryst. Growth Des., vol. 8, pp. 1282-1287, Apr 2008.
    [20] Z. G. Ji, J. Du, J. Fan, and W. Wang, "Gallium oxide films for filter and solar-blind UV detector," Opt. Mater., vol. 28, pp. 415-417, Mar 2006.
    [21] Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, "Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors," Appl. Phys. Lett., vol. 90, Jan 2007.
    [22] T. Oshima, T. Okuno, and S. Fujita, "Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors," Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap., vol. 46, pp. 7217-7220, Nov 2007.
    [23] P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang, "Individual β-Ga2O3 nanowires as solar-blind photodetectors," Appl. Phys. Lett., vol. 88, Apr 2006.
    [24] T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, "Vertical solar-blind deep-ultraviolet schottky photodetectors based on β-Ga2O3 substrates," Appl. Phys. Express, vol. 1, Jan 2008.
    [25] M. Orita, H. Ohta, M. Hirano, and H. Hosono, "Deep-ultraviolet transparent conductive β-Ga2O3 thin films," Appl. Phys. Lett., vol. 77, pp. 4166-4168, Dec 2000.
    [26] F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, "Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition," J. Appl. Phys., vol. 98, Jul 2005.
    [27] H. W. Kim and N. H. Kim, "Growth of gallium oxide thin films on silicon by the metal organic chemical vapor deposition method," Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., vol. 110, pp. 34-37, Jun 2004.
    [28] G. A. Battiston, R. Gerbasi, M. Porchia, R. Bertoncello, and F. Caccavale, "Chemical vapour deposition and characterization of gallium oxide thin films," Thin Solid Films, vol. 279, pp. 115-118, Jun 1996.
    [29] Y. X. Li, A. Trinchi, W. Wlodarski, K. Galatsis, and K. Kalantar-zadeh, "Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants," Sens. Actuator B-Chem., vol. 93, pp. 431-434, Aug 2003.
    [30] A. C. Lang, M. Fleischer, and H. Meixner, "Surface modifications of Ga2O3 thin film sensors with Rh, Ru and Ir clusters," Sens. Actuator B-Chem., vol. 66, pp. 80-84, Jul 2000.

    References in Chapter 2
    [1] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, et al., "Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films," Appl. Phys. Lett., vol. 68, pp. 643-645, Jan 1996.
    [2] M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, et al., "Conductive layer near the GaN/sapphire interface and its effect on electron transport in unintentionally doped n-type GaN epilayers," Appl. Phys. Lett., vol. 77, pp. 2557-2559, Oct 2000.
    [3] Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, et al., "Effectiveness of TiN porous templates on the reduction of threading dislocations in GaN overgrowth by organometallic vapor-phase epitaxy," Appl. Phys. Lett., vol. 86, Jan 2005.

    References in Chapter 3
    [1] K. P. Korona, A. Drabinska, P. Caban, and W. Strupinski, "Tunable GaN/AlGaN ultraviolet detectors with built-in electric field," J. Appl. Phys., vol. 105, Apr 2009.
    [2] A. Asgari, E. Ahmadi, and M. Kalafi, "AlxGa1-xN/GaN multi-quantum-well ultraviolet detector based on p-i-n heterostructures," Microelectron. J., vol. 40, pp. 104-107, Jan 2009.
    [3] L. S. Chuah, Z. Hassan, H. A. Hassan, and N. M. Ahmed, "GaN Schottky barrier photodiode on Si (111) with low-temperature-grown cap layer," J. Alloys Compd., vol. 481, pp. L15-L19, Jul 2009.
    [4] Y. Zhang, S. C. Shen, H. J. Kim, S. Choi, J. H. Ryou, R. D. Dupuis, et al., "Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates," Appl. Phys. Lett., vol. 94, Jun 2009.
    [5] S. J. Hearne, J. Han, S. R. Lee, J. A. Floro, D. M. Follstaedt, E. Chason, et al., "Brittle-ductile relaxation kinetics of strained AlGaN/GaN heterostructures," Appl. Phys. Lett., vol. 76, pp. 1534-1536, Mar 2000.
    [6] J. A. Floro, D. M. Follstaedt, P. Provencio, S. J. Hearne, and S. R. Lee, "Misfit dislocation formation in the AlGaN/GaN heterointerface," J. Appl. Phys., vol. 96, pp. 7087-7094, Dec 2004.
    [7] E. C. Young, A. E. Romanov, C. S. Gallinat, A. Hirai, G. E. Beltz, and J. S. Speck, "Anisotropy of tensile stresses and cracking in nonbasal plane AlxGa1-xN/GaN heterostructures," Appl. Phys. Lett., vol. 96, Jan 2010.
    [8] S. J. Chang, Y. K. Su, Y. Z. Chiou, J. R. Chiou, B. R. Huang, C. S. Chang, et al., "Deposition of SiO2 layers on GaN by photochemical vapor deposition," J. Electrochem. Soc., vol. 150, pp. C77-C80, Feb 2003.
    [9] L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu, et al., "High-dielectric-constant Ta2O5/n-GaN metal-oxide-semiconductor structure," Appl. Phys. Lett., vol. 77, pp. 3788-3790, Dec 2000.
    [10] C. X. Wang, N. Maeda, M. Hiroki, T. Kobayashi, and T. Enoki, "High temperature characteristics of insulated-gate AlGaN/GaN heterostructure field-effect transistors with ultrathin Al2O3/Si3N4 bilayer," Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap., vol. 44, pp. 7889-7891, Nov 2005.
    [11] C. T. Lee, H. W. Chen, and H. Y. Lee, "Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN," Appl. Phys. Lett., vol. 82, pp. 4304-4306, Jun 2003.
    [12] K. Matsuzaki, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, et al., "Growth, structure and carrier transport properties of Ga2O3 epitaxial film examined for transparent field-effect transistor," Thin Solid Films, vol. 496, pp. 37-41, Feb 2006.
    [13] F. Ren, C. R. Abernathy, J. D. MacKenzie, B. P. Gila, S. J. Pearton, M. Hong, et al., "Demonstration of GaN MIS diodes by using AlN and Ga2O3(Gd2O3) as dielectrics," Solid-State Electronics, vol. 42, pp. 2177-2181, Dec 1998.
    [14] M. Passlack, N. E. J. Hunt, E. F. Schubert, G. J. Zydzik, M. Hong, J. P. Mannaerts, et al., "Dielectric properties of electron‐beam deposited Ga2O3 films," Appl. Phys. Lett., vol. 64, pp. 2715-2717, May 1994.
    [15] R. Suzuki, S. Nakagomi, and Y. Kokubun, "Solar-blind photodiodes composed of a Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer," Appl. Phys. Lett., vol. 98, p. 131114, 2011.
    [16] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, "A β-Ga2O3 Solar-Blind Photodetector Prepared by Furnace Oxidization of GaN Thin Film," IEEE Sens. J., vol. 11, pp. 999-1003, Apr 2011.
    [17] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, "A β-Ga2O3/GaN Hetero-Structured Solar-Blind and Visible-Blind Dual-Band Photodetector," IEEE Sens. J., vol. 11, pp. 1491-1492, Jun 2011.
    [18] S. Nakamura, "GaN Growth Using GaN Buffer Layer," Jpn. J. Appl. Phys. Part 2 - Lett., vol. 30, pp. L1705-L1707, Oct 1991.
    [19] E. D. Bourret-Courchesne, S. Kellermann, K. M. Yu, M. Benamara, Z. Liliental-Weber, J. Washburn, et al., "Reduction of threading dislocation density in GaN using an intermediate temperature interlayer," Appl. Phys. Lett., vol. 77, pp. 3562-3564, Nov 2000.
    [20] R. R. Pela, C. Caetano, M. Marques, L. G. Ferreira, J. Furthmuller, and L. K. Teles, "Accurate band gaps of AlGaN, InGaN, and AlInN alloys calculations based on LDA-1/2 approach," Appl. Phys. Lett., vol. 98, Apr 2011.
    [21] O. Ambacher, M. S. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R. A. Fischer, et al., "Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition," J. Vac. Sci. Technol. B, vol. 14, pp. 3532-3542, Nov-Dec 1996.

    References in Chapter 4
    [1] S. J. Hearne, J. Han, S. R. Lee, J. A. Floro, D. M. Follstaedt, E. Chason, et al., "Brittle-ductile relaxation kinetics of strained AlGaN/GaN heterostructures," Appl. Phys. Lett., vol. 76, pp. 1534-1536, Mar 2000.
    [2] J. A. Floro, D. M. Follstaedt, P. Provencio, S. J. Hearne, and S. R. Lee, "Misfit dislocation formation in the AlGaN/GaN heterointerface," J. Appl. Phys., vol. 96, pp. 7087-7094, Dec 2004.
    [3] E. C. Young, A. E. Romanov, C. S. Gallinat, A. Hirai, G. E. Beltz, and J. S. Speck, "Anisotropy of tensile stresses and cracking in nonbasal plane AlxGa1-xN/GaN heterostructures," Appl. Phys. Lett., vol. 96, Jan 2010.
    [4] C. T. Lee, H. W. Chen, and H. Y. Lee, "Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN," Appl. Phys. Lett., vol. 82, pp. 4304-4306, Jun 2003.
    [5] K. Matsuzaki, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, et al., "Growth, structure and carrier transport properties of Ga2O3 epitaxial film examined for transparent field-effect transistor," Thin Solid Films, vol. 496, pp. 37-41, Feb 2006.
    [6] F. Ren, C. R. Abernathy, J. D. MacKenzie, B. P. Gila, S. J. Pearton, M. Hong, et al., "Demonstration of GaN MIS diodes by using AlN and Ga2O3(Gd2O3) as dielectrics," Solid-State Electronics, vol. 42, pp. 2177-2181, Dec 1998.
    [7] M. Passlack, N. E. J. Hunt, E. F. Schubert, G. J. Zydzik, M. Hong, J. P. Mannaerts, et al., "Dielectric properties of electron‐beam deposited Ga2O3 films," Appl. Phys. Lett., vol. 64, pp. 2715-2717, May 1994.
    [8] R. Suzuki, S. Nakagomi, and Y. Kokubun, "Solar-blind photodiodes composed of a Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer," Appl. Phys. Lett., vol. 98, p. 131114, 2011.
    [9] H. L. Huang, Y. N. Xie, W. F. Yang, F. Zhang, J. F. Cai, and Z. Y. Wu, "Low-Dark-Current TiO2 MSM UV Photodetectors With Pt Schottky Contacts," IEEE Electron Device Lett., vol. 32, pp. 530-532, Apr 2011.
    [10] Y. K. Su, S. J. Chang, C. H. Chen, J. F. Chen, G. C. Chi, J. K. Sheu, et al., "GaN Metal-Semiconductor-Metal Ultraviolet Sensors With Various Contact Electrodes," IEEE Sens. J., vol. 2, pp. 366-371, Aug 2002.
    [11] H. K. Yadav, K. Sreenivas, and V. Gupta, "Persistent photoconductivity due to trapping of induced charges in Sn/ZnO thin film based UV photodetector," Appl. Phys. Lett., vol. 96, May 2010.
    [12] S. Nakamura, "GaN Growth Using GaN Buffer Layer," Jpn. J. Appl. Phys. Part 2 - Lett., vol. 30, pp. L1705-L1707, Oct 1991.
    [13] E. D. Bourret-Courchesne, S. Kellermann, K. M. Yu, M. Benamara, Z. Liliental-Weber, J. Washburn, et al., "Reduction of threading dislocation density in GaN using an intermediate temperature interlayer," Appl. Phys. Lett., vol. 77, pp. 3562-3564, Nov 2000.

    References in Chapter 5
    [1] H. R. Stuart and D. G. Hall, "Island size effects in nanoparticle-enhanced photodetectors," Appl. Phys. Lett., vol. 73, pp. 3815-3817, Dec 1998.
    [2] M. D. Yang, Y. K. Liu, J. L. Shen, C. H. Wu, C. A. Lin, W. H. Chang, et al., "Improvement of conversion efficiency for multi-junction solar cells by incorporation of Au nanoclusters," Opt. Express, vol. 16, pp. 15754-15758, Sep 2008.
    [3] D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett., vol. 86, Feb 2005.
    [4] B. Cho, J. Lee, H. Seo, and H. Jeon, "Electrical stability enhancement of the amorphous In-Ga-Zn-O thin film transistor by formation of Au nanoparticles on the back-channel surface," Appl. Phys. Lett., vol. 102, Mar 2013.
    [5] C. H. Lin, T. T. Chen, and Y. F. Chen, "Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration," Opt. Express, vol. 16, pp. 16916-16922, Oct 2008.
    [6] K. W. Liu, M. Sakurai, M. Y. Liao, and M. Aono, "Giant Improvement of the Performance of ZnO Nanowire Photodetectors by Au Nanoparticles," J. Phys. Chem. C, vol. 114, pp. 19835-19839, Nov 2010.
    [7] S. Nakamura, "GaN Growth Using GaN Buffer Layer," Jpn. J. Appl. Phys. Part 2 - Lett., vol. 30, pp. L1705-L1707, Oct 1991.
    [8] E. D. Bourret-Courchesne, S. Kellermann, K. M. Yu, M. Benamara, Z. Liliental-Weber, J. Washburn, et al., "Reduction of threading dislocation density in GaN using an intermediate temperature interlayer," Appl. Phys. Lett., vol. 77, pp. 3562-3564, Nov 2000.
    [9] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, et al., "ZnO nanowire UV photodetectors with high internal gain," Nano Lett., vol. 7, pp. 1003-1009, Apr 2007.
    [10] Q. H. Li, Q. Wan, Y. X. Liang, and T. H. Wang, "Electronic transport through individual ZnO nanowires," Appl. Phys. Lett., vol. 84, pp. 4556-4558, May 2004.
    [11] P. Feng, X. Y. Xue, Y. G. Liu, Q. Wan, and T. H. Wang, "Achieving fast oxygen response in individual β-Ga2O3 nanowires by ultraviolet illumination," Appl. Phys. Lett., vol. 89, Sep 2006.
    [12] J. A. Garrido, E. Monroy, I. Izpura, and E. Munoz, "Photoconductive gain modelling of GaN photoconductors," Semicond. Sci. Technol., vol. 13, pp. 563-568, Jun 1998.
    [13] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, "Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN," J. Appl. Phys., vol. 83, pp. 6148-6160, Jun 1998.
    [14] H. K. Yadav, K. Sreenivas, and V. Gupta, "Persistent photoconductivity due to trapping of induced charges in Sn/ZnO thin film based UV photodetector," Appl. Phys. Lett., vol. 96, May 2010.
    [15] Z. Hajnal, J. Miro, G. Kiss, F. Reti, P. Deak, R. C. Herndon, et al., "Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3," J. Appl. Phys., vol. 86, pp. 3792-3796, Oct 1999.
    [16] J. M. Wu and C. H. Kuo, "Ultraviolet photodetectors made from SnO2 nanowires," Thin Solid Films, vol. 517, pp. 3870-3873, May 2009.
    [17] H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," Nat. Mater., vol. 9, pp. 205-213, Mar 2010.

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE