| 研究生: |
王國安 Wang, Guo-An |
|---|---|
| 論文名稱: |
難燃性聚甲基丙烯酸甲酯之合成與性質的探討 Study on the Synthesis and Properties of Flame-Retardant Poly(methyl methacrylate) |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 171 |
| 中文關鍵詞: | 2-甲基丙醯乙基苯基磷酸酯 、奈米複合材料 、聚甲基丙烯酸甲酯 、水滑石 |
| 外文關鍵詞: | 2-Methacryloxyethyl phenyl phosphate, Layered double hydroxides, Poly(methyl methacrylate), Nanocomposite |
| 相關次數: | 點閱:116 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聚甲基丙烯酸甲酯(PMMA)由於具有高的光穿透性、高硬度與高耐候性等許多優點,所以被廣泛的應用在日常生活中。不幸的,PMMA本身是屬於高可燃性塑膠,使得它在許多領域應用上受到限制。因此,為了提高PMMA的耐燃性與熱穩定性,增加它的商業價值與應用範圍,本研究主要目的就是分別添加反應型的水滑石與磷系難燃劑而合成出具高耐熱性的難燃型PMMA。
本研究第一部份即是利用改良式二階段本體聚合法製備出不同LDH-U含量的剝離型LDH-U/PMMA奈米複合材料,LDH-U則是利用共沈澱的方式製備,主要是當做反應型無機難燃劑使用。本研究使用X-ray繞射儀與穿透式電子顯微鏡來分析LDH-U在PMMA中的分散行為。具有5 wt% LDH-U添加量的LDH-U/PMMA奈米複合材料(PMMAL5),在結束預聚合反應後,水滑石層板就已被剝離且均勻的分散在預聚合物中。微差掃瞄熱卡計與熱重分析儀的實驗結果說明了這些奈米複合材料均比PMMA具有更高的玻璃轉移溫度(Tg)與5%重量損失溫度(T5%)。當添加5 wt %的LDH-U時,奈米複合材料的Tg與T5%分別比純PMMA高出22 oC與89 oC,而這些奈米複合材料的抗拉強度與楊氏模數同樣高於純的PMMA,且隨著LDH-U的添加量增加而增加。在難燃性質部分,經由極限耗氧指數(LOI)與UL-94測試結果表示,雖然添加5 wt%的 LDH-U可以提高LOI,但仍然無法有效的抑制燃燒。
本研究第二部分即是利用苯基二氯磷酸酯先與2-烴乙基-甲基丙烯酸酯進行酯化反應,然後經由水解步驟而合成出2-甲基丙醯乙基苯基磷酸酯(MEPP);MEPP主要是當做反應型磷系難燃劑使用,之後使用二階段本體聚合法製備出不同MEPP含量的MEPP/MMA共聚合物。藉由Fineman-Ross、Kelen-Tüdos與Joshi-Joshi三種不同方法來探討MEPP/MMA聚合系統的單體反應比。分析結果顯示出MEPP與MMA主要是進行隨機共聚合反應,且高分子鏈上的自由基比較傾向與MEPP單體反應。MEPP的加入,在輕微降低PMMA的Tg下,可大幅提昇PMMA的熱穩定性,而LOI與UL-94測試結果證實,當MEPP的添加量為20 wt%時,MEPP/MMA共聚合物可以有效的抑制燃燒而具有難燃的特性。
凝聚相產物的分析結果說明MEPP/MMA共聚合物的裂解可大致被區分成下列六個部分:(1)不穩定P-O-C aromatic與aliphatic結構的斷裂、(2)MMA的脫除、(3)MEPP單元上酯基的分解與碳酸酐結構的生成、(4)碳酸酐結構的分解、(5)甲基結構的斷裂以及(6)P-O-P與P-O-Φ複合結構的生成。綜合氣相產物的分析結果, MEPP/MMA共聚合物裂解所產生的氣相產物隨著溫度升高,依序為MMA、phenol、alcohol/phosphate、aldehyde、CO/CO2。最後,根據凝聚相產物與氣相產物的分析結果,本文提出了MEPP/MMA共聚合物可能的熱裂解機構。
Poly(methyl methacrylate) (PMMA) is widely used in various industries because of its high optical transmission, hardness, and weatherability. Unfortunately, PMMA is a high flammability plastic, which has limited its use in many applications. The fire resistance and thermal stability of PMMA need to be urgently improved to increase its commercial value and range of industrial applications. Therefore, the main aim of this investigation is to synthesize flame-retardant PMMA with high thermal-resistance by incorporating reactive layered double hydroxides (LDHs) and phosphorus-containing flame retardant, respectively.
In the first part of this study, the exfoliated LDH-U/PMMA nano- composites containing various contents of LDH-U were prepared in a modified two-stage process by bulk polymerization. The 10-undecenoate intercalated LDH (LDH-U) for use as a reactive inorganic flame retardant was prepared via the co-precipitation method. Moreover, the dispersed behavior of the LDH-U in the PMMA matrix was identified by X-ray diffraction and transmission electron microscopy. For the LDH-U/PMMA nanocomposite containing 5 wt% LDH-U (PMMAL5), the LDH layers were exfoliated and homogeneously dispersed in the pre-polymer matrix following the pre-polymerization. All these nanocomposites significantly demonstrate enhanced glass transition temperature (Tg) and decomposition temperatures at 5% weight loss (T5%) compared to the pristine PMMA, as identified by differential scanning calorimetry and thermogravimetric analysis. For example, the Tg and T5% of PMMAL5 increased by 22 oC and 89 oC, respectively. In addition, the ultimate tensile strength and Young’s modulus of these nanocomposites was also enhanced by incorporating the LDH-U into the PMMA matrix and increasing it with the amount of LDH-U. The fire-retardant properties of these nanocomposites were also studied by limiting oxygen index (LOI) and UL-94 tests, indicating that PMMAL5 cannot effectively inhibit burning, despite having higher LOI value than that of the pristine PMMA.
In second section of this study, 2-methacryloxyethyl phenyl phosphate (MEPP), as a phosphorus-containing flame retardant, was synthesized via the esterification of phenyl dichlorophosphate with 2-hydroxyethyl methacrylate, followed by hydrolysis. The MEPP/MMA copolymers containing various contents of MEPP were prepared by two-stage bulk polymerization. Moreover, the monomer reactivity ratios of MEPP/MMA system were calculated by three methods of Finemann-Ross, Kelen-Tüdös and Joshi-Joshi, indicating that MEPP undergoes random copolymerization with MMA, and MEPP enters preferentially into the polymer chain. The thermal stability of MEPP/MMA copolymers was considerably enhanced with only a slight reduction in Tg. LOI and UL-94 tests provide considerable evidence that a MEPP/MMA copolymer with only 20 wt% MEPP (PMMA20) can effectively inhibit burning and exhibit flame retardance.
According to the analytical results of the condensed-phase products, the thermal degradation of MEPP/MMA copolymer can be roughly separated into six portions: (1) the scissions of the least stable P-O-C aromatic and aliphatic structures, (2) the elimination of MMA, (3) the ester group decomposition accompanying the formation of carbonic anhydride structure, (4) the decomposition of carbonic anhydride structure, (5) the scissions of methyl group and (6) the formation of P-O-P and P-O-Φ complex structures. The volatilized products for the thermal degradation of MEPP/MMA copolymer were characterized by TGA/FT-IR technique, indicating that the volatilized products were MMA, phenol, alcohol/phosphate, aldehyde and CO/CO2, depending on the temperature of onset formation. Finally, possible mechanisms for the thermal degradation of MEPP/MMA copolymer were also proposed in accordance with the analytic results of condensed-phase and volatilized products.
1.歐育湘、陳宇、王筱梅, “阻燃性高分子材料”, 國防工業出版社, p. 12; 2001.
2.蘇俊輝, “塑膠的難燃性”, 塑膠資訊, 68: 34; 1996.
3.沈永清、張信貞、莊學平、張榮樹, “高分子難燃機構及原理”, 化工資訊, 9: 15;
1995.
4.高振寬, “紫外光與熱雙重硬化含磷壓克力共聚物之製備與難燃姓探討”, 國立成功大
學化學工程研究所碩士論文, 2001.
5.謝宛融, “新穎非鹵型難燃劑之合成與性質探討”, 國立成功大學化學工程研究所碩士
論文, 2004
6.偉帆, “難燃劑於防火材料之應用”, 塗料與塗裝技術, 88: 32; 2001.
7.黃素珍, “難燃劑市場及技術最新動向”, 化工資訊, 6: 40; 1993.
8.Banks M, Ebdon JR, Johnson M. Polymer 34: 4547; 1993.
9.梁坤泰, ”磷系難燃劑” , 高分子工業, 77: 68; 1998.
10.梁坤泰, “塑膠的難燃劑”, 高分子工業, 68: 34; 1997.
11.陳鍾銘, “磷系難燃劑之過去與未來”, 強化塑膠, 89: 76; 2001.
12.王富材, “無機系難燃劑”, 高分子工業, 51: 39; 1994.
13.Duquesne S, Lefebvre J, Seeley G, Camino G, Delobel R, Bras ML. Polym
Degrad Stab 85: 883; 2004.
14.陳光榮、黃素珍, “難燃劑國內外市場現況及走向”, 化工資訊, 7: 24; 1993.
15.Kormanei S. J Master Chem 2: 1219; 1992.
16.Giannelis EP. Adv Mater 8: 29; 1996.
17.Burnside SD, Giannelis EP. Chem Mater 7: 1597; 1995.
18.Uhl FM, Wilkie CA. Polym Degrad Stab 76: 111; 2002.
19.Vyazovkin S, Dranca I, Fan X, Advincula R. J Phys Chem B 108: 11672; 2004.
20.Kumar S, Jog JP, Natarajan U. J Appl Polym Sci 89: 1186; 2003.
21.Huang X, Brittain WJ. Macromolecules 34: 3255; 2001.
22.Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O. J Polym Sci Part A:
Polym Chem 31: 2493; 1993.
23.Zeng C, Lee LJ. Macromolecules 34: 4098; 2001.
24.Yeh JM, Liou SJ, Lin CY, Cheng CY, Chang Yw. Chem Mater 14: 154; 2002.
25.Messersmith PB, Giannelis EP. J Polym Sci Part A: Polym Chem 33: 1047; 1995.
26.Gilman JW. Appl Clay Sci 15: 31; 1999.
27.Alexandre M, Dubois P. Mater Sci Eng Rep 28: 1; 2000.
28.Porter D, Metcalfe E, Thomas MJK. Fire Mater 24: 45; 2000.
29.Jash P, Willie CA. Polym Degrad Stab 88: 401; 2005.
30.Laachachi A, Leroy E, Cochez, M, Ferriol M, Cuesta JML. Polym Degrad Stab
89: 344; 2005.
31.Kopka H, Beneke K, Lagaly. J Colloid Interf Sci 123: 427; 1988.
32.Carlino S, Hudson MJ. J Mater Chem 4: 99; 1994.
33.Constantino VRL, Pinnavaia TJ. Inorg Chem 34: 883; 1995.
34.Costantino U, Marmottini F, Nocchetti M, Vivani R. Eur J Inorg Chem 10:
1439; 1998.
35.Taibi M, Ammar Souad, Jouini N, Fiévet, Molinié P, Drillon M. J Mater Chem
12: 3238; 2002.
36.Lee JH, Rhee SW, Jung DY. Chem Mater 16: 3774; 2004.
37.Feitknecht W. Helv Chim Acta 25: 131; 1942.
38.Feitknecht W. Helv Chim Acta 25: 555; 1942.
39.Reichle WT. J Catal 94: 547; 1985.
40.Reichle WT. Chemtech 16: 58; 1986.
41.Suzuki E, Ono Y. Bull Chem Soc Jpn 61: 1008; 1988.
42.Twu J, Dutta P. J Phys Chem 93: 7863; 1989.
43.Feng YZ, Zhang LR, Evans DG, Duan X. Chem Mater 14: 4286; 2004.
44.Rey F, Fornes V, J Chem Soc Faraday Trans 88: 2233; 1992.
45.Cavani F, Trifiro F, Vaccari A. Catal Today 11: 173; 1991.
46.Ross GJ, Kodama H. Am Mineral 52: 103; 1967.
47.Chibwe K, Jones W. J Chem Soc Chem Commun 14: 926; 1989.
48.Meyn M, Beneke K, Lagaly G.. Inorg Chem 29: 5201; 1990.
49.Meyn M, Beneke K, Lagaly G.. Inorg Chem 32: 1209; 1993.
50.Miyata S, Kumura T. Chem Lett 2: 843; 1973.
51.Miyata S, Okada A. Clays Clay Miner 25: 14; 1977.
52.Miyata S. Clays Clay Miner 28: 50; 1980.
53.Miyata S. Clays Clay Miner 31: 305; 1983.
54.Crepaldi EL, Pavan PC, Tronto J, Valim JB. J Colloid Interf Sci 248: 429;
2002.
55.Oriakhi CO, Farr IV, Lerner MM. J Mater Chem 6: 103; 1996.
56.Carlino S, Hudson MJ, Husain SW, Knowles JA. Solid State Ionics 84: 117;
1996.
57.Carlino S. Solid State Ionics 98: 7; 1997.
58.Hudson MJ, Carlino S, Apperley DC. J Mater Chem 5: 323; 1995.
59.Dimotakis ED, Pinnavaia TJ. Inorg Chem 23: 2393; 1990.
60.Tseng CR, Wu JY, Lee HY, Chang FC. J Appl Polym Sci 85: 1370; 2002.
61.Wang D, Zhu J, Yao Q, Wilkie CA. Chem Mater 14: 3837; 2002.
62.Su S, Wilkie CA. J Polym Sci, Polym Chem 41: 1124; 2003.
63.Zhu J, Morgan AB, Lamelas FL, Wilkie CA. Chem Mater 13: 3774; 2001.
64.Zhu J, Uhl FM, Morgan AB, Wilkie CA. Chem Mater 13: 4649; 2001.
65.Biasci L, Aglietto M, Ruggeri G, Ciardelli F. Polymer 35: 3296; 1994.
66.Fu X, Qutubuddin S. Polymer 42: 807; 2001.
67.Rey S, Mérida-Robles J, Han KS, Guerlou-Demourgues L, Delmas C, Duguet E.
Polym Int 48: 277; 1999.
68.Usuki A, Kojima Y, Kawasumi M, Okada A, Kurauchi T, Kamigaito O. Polym Prepr 31: 651; 1990.
69.Aranda P, Ruiz-Hitzky E. Chem Mater 4: 1395; 1992.
70.Usuki A, Kojima Y, Kawasumi M, Okada A, Fujushima A, Kurauchi T, Kamigaito
O. J Mater Res 8: 1179; 1993.
71.Yano K, Usuki A, Okada A. J Polym Sci Part A: Polym Chem 31: 2493; 1993.
72.Kumar S, Jog JP, Natarajan U. J Appl Polym Sci 89: 1186; 2003.
73.Liao CS, Ye WB. Mater Chem Phys 88: 84; 2004.
74.Liao CS, Ye WB. Electrochim Acta 49: 4993; 2004.
75.Zilg C, Thompson R, Millhaupt R, Finter J. Adv Mater 11: 49; 1999.
76.Pinnavaia TJ, Beall GW, Polymer-Clay Nanocomposites, john Wiley & Sons, New
York, 2000.
77.Fischer HR, Gielgen LH, Koster TPM. Acta Polym 50: 122; 1999.
78.Sugahara Y, Yokoyama N, Kuroda K, Kato C. Ceram Int 14: 163; 1988.
79.Challier T, Slade RCT. J. Mater. Chem 4: 367; 1994.
80.Whilton NT, Vickers PJ, Mann S. J. Mater Chem 7: 1623; 1997.
81.Oriakhi CO, Farr IV, Lerner MM. Clay Clay Miner 45: 194; 1997.
82.Wilson OC, Olorunyolemi T, Jaworski A, Borum L, Young D, Siriwat A, Dickens
E, Oriakhi C, Lerner M. Appl Clay Sci 15: 265; 1999.
83.Leroux F, Gachon J, Besse JP. J Solid State Chem 177: 245; 2004.
84.Shouldice GTD, Choi PY, Koene BE, Nazar LF, Rudin A. Polym Sci Pol Chem 33:
1409; 1995.
85.Lin JJ, Juang TY. Polymer 45: 7887; 2004.
86.Tanaka M, Park IY, Kuroda K, Chuzo K. Bull Chem Soc Jpn 62: 3442; 1989.
87.Roland-Swanson L, Besse JP, Leroux F. Chem Mater 16: 5512; 2004.
88.Moujahid EM, Dubois M, Besse JP, Leroux F. Chem Mater 14: 3799; 2002.
89.Moujahid EM, Besse JP, Leroux F. J. Mater Chem 12: 3324; 2002.
90.Vaysse C, Guerlou-Demourgues L, Duguet E, Delmas C. Inorg Chem 42: 4559;
2003.
91.Moujahid EM, Inacio J, Besse JP, Leroux F. Micropor Mesopor Mat 57: 37;
2003.
92.Vieille L, Taviot-Guého C, Besse JP, Leroux F. Chem Mater 15: 4369; 2003.
93.Vaysse C, Guerlou-Demourgues, Delmas C, Duguet E. Macromolecules 37: 45;
2004.
94.Li B, Hu Y, Zhang R, Chen Z, Fan W. Materials Res Bull 38: 1567; 2003.
95.Cho MS, Shin B, Nam JD, Lee Y, Song K. Polym Int 53: 1532; 2004.
96.Cho MS, Shin B, Choi SD, Lee Y, Song KG.. Electrochim Acta 50: 331; 2004.
97.Chen W, Feng L, Qu B. Solid State Commun 130: 259; 2004.
98.Chen W, Qu B. Chem Mater 15: 3208; 2003.
99.Chen W, Feng L, Qu B. Chem Mater 16: 368; 2004.
100.Hsueh HB, Chen CY. Polymer 44: 1151; 2003.
101.Hsueh HB, Chen CY. Polymer 44: 5275; 2003.
102.Chin WK, Shau MD, Tsai WC. J Polym Sci Polym Chem 33: 373; 1995.
103.Liu YL, Hsiue GH, Chiu YS, Jeng RJ, Perng LH. J Appl Polym Sci 6: 613;
1996.
104.Wang CS, Shieh JY. Eur Polym J 36: 443; 2000.
105.Li JZ, Chen SY, Xu XM. J Appl Polym Sci 40: 417; 1990.
106.Annakutty KS, Kishore K. Polymer 29: 756; 1988.
107.Kishore K, Kannan P. J Polym Sci Polym Chem 28: 3481; 1990.
108.Kannan P, Kishore K. Polymer 33: 418; 1992.
109.Kannan P, Gangadhara, Kishore K. Polymer 38: 4349; 1997.
110.Wang LS, Wang XL, Yan GL. Polym Degrad Stab 69: 127; 2000.
111.Chang TC, Chiu YS, Chen HB, Ho SY. Polym Degrad Stab 47: 375; 1995.
112.Shao CH, Huang JJ, Chen GN, Yeh JT, Chen KN. Polym Degrad Stab 65: 359;
1999.
113.Wang TZ, Chen GN. J Appl Polym Sci 74: 2499; 1999.
114.Shao CH, Wang TZ, Chen GN, Chen KJ, Yeh JT, Chen KN. J Polym Res 7: 1;
2000.
115.Chiotis A, Clouet G, Brossas J. Polym Bull 6: 577; 1982.
116.Liu YL, Hsiue GH, Chiu YS, Jeng RJ, Ma C. J Appl Polym Sci 59: 1619; 1996.
117.Banks M, Ebdon JR, Johnson M. Polymer 34: 4547; 1993.
118.Toy ADF, Brown LV. Ind Eng Chem 40: 2276; 1948.
119.Herbst W, Rochlitz F, Vilcsek H. Ger Pat 1,106,963 1961.
120.Rochlitz F, Vilcsek H, Koch G. Ger Pat 1,135,176 1962.
121.Kohler W. Ger Pat 1,134,836 1962.
122.Toy ADF. US Pat 2,453,168 1949.
123.Toy ADF. US Pat 2,49,637 1950.
124.Toy ADF. US Pat 2,49,638 1950.
125.Toy ADF, Cooper RS. J Am Chem Soc 76: 2191; 1954.
126.Rabinowitz R, Marcus R, Pellon J. J Polym Sci Part A 2: 1241; 1964.
127.Rabinowitz R, Marcus R, Pellon J. J Polym Sci Part A 2: 1233; 1964.
128.O’Brien JL, Park E, Lane CA. US Pat 2,934,555 1960.
129.O’Brien JL, Park E, Lane CA. US Pat 3,030,347 1962.
130.Liepens R, Surles JR, Morosoff N, Stannett V, Duffy JJ, Day FH. J Polym
Sci 22: 1062; 1978.
131.Moszner N, Zeuner F, Fischer UK, Rheinberger V. Macromol Chem Phys 200:
1062; 1999.
132.Price D, Pyrah K, Hull TR, Milnes GJ, Wooley WD, Ebdon JR,. Hunt BJ and
Konkel CS, Polym Int 49: 1164; 2000.
133.Price D, Pyrah K, Hull TR, Milnes GJ, Ebdon JR, Hunt BJ, Joseph P, Konkel
CS. Polym Degrad Stab 74: 441; 2001.
134.Price D, Pyrah K, Hull TR, Milnes GJ, Ebdon JR, Hunt BJ, Joseph P. Polym
Degrad Stab 77: 227; 2002.
135.Ebdon JR, Price D, Hunt BJ, Joseph P, Gao F, Milnes GJ, Cunliffe LK. Polym
Degrad Stab 69: 267; 2000.
136.Maier L, Seyferth D, Stone FGA, Rochow EG. J Am Chem Soc 79: 5884; 1957.
137.Banks M, Ebdon JR, Johnson M. Polymer 35: 3470; 1994.
138.Reghunadhan Nair CP, Clouet G, Brossas J. J Polym Sci, Polym Chem Ed 26:
1791; 1988.
139.Reghunadhan Nair CP, Clouet G. Eur Polym J 25: 251; 1989.
140.Reghunadhan Nair CP, Clouet G. Polymer 29: 1909; 1988.
141.Reghunadhan Nair CP, Clouet G. Makromol Chem 190: 1243; 1989.
142.Reghunadhan Nair CP, Clouet G, Guilbert Y. Polym Degrad Stab 26: 305; 1989.
143.Cochez M, Ferriol M, Weber JV, Chaudron P, Oget N, Mieloszynski JL. Polym
Degrad Stab 70: 455; 2000.
144.Gentilhomme A, Cochez M, Ferrior M, Oget N, Mieloszynski JL. Polym Degrad
Stab 83: 347; 2003.
145.Gentilhomme A, Cochez M, Ferrior M, Oget N, Mieloszynski JL. Polym Degrad
Stab 88: 92; 2005.
146.Ebdon JR, Hunt BJ, Joseph P, Konkel CS, Price D, Pyrah K, Hull TR, Milnes
GJ, Hill SB, Lindsay CI, McCluskey JM, Robinson I. Polym Degrad Stab70:
425; 2000.
147.Lindsay, C, Hill SB, Hearn M, Manton G, Everall N, Bunn A, Heron J,
Fletcher I. Polym Int 49: 1183; 2000.
148.Kanoh T, Shichi T, Takagi K Chem Lett 28: 117; 1999.
149.Costantino U, Marmottini M, Nocchetti M, Vivani R. Eur J Inorg Chem 10:
1439; 1998.
150.Miyata S. Clays Clay Miner 23: 369; 1975.
151.Iyi N, Matsumoto T, Kaneko Y, Kitamura K. Chem Mater 16: 2926; 2004.
152.McGrath KM. Colloid Polym Sci 274: 499; 1996.
153.Choi YS, Choi MH, Wang KH, Kim SO, Kim YK, Chung IJ. Macromolecules 34:
8978; 2001.
154.Wang GA, Wang CC, Chen CY. J Inorg Organomet Polym 15: 239; 2005.
155.Solomon DH, Swift JD. J Appl Polym Sci 11: 2567; 1967.
156.Tabtiang A, Lumlong S, Venables RA. Eur Polym J 36: 2559; 2000.
157.Kashiwagi T, Inaba A, Brown JE, Hatada K, Kitayama T, Masuda.
Macromolecules 19: 2160; 1989.
158.Peterson JD, Vyazovkin S, Wight CA. J Phys Chem B 103: 8087, 1999.
159.McNeill IC. Comprehensive Polym Sci, vol. 6/15 Pergamon Press, p. 458-62;
1989.
160.Meneghetti Paulo, Qutubuddin S. Langmuir 20: 3424; 2004.
161.Lyon RH. Thermochim Acta 297: 117; 1997.
162.Ferriol M, Gentilhomee A, Cochez M, Oget N, Mieloszynski JL. Polym Degrad
Stab 79: 271; 2003.
163.Petrovic ZS, Zavargo ZZ. Therm Anal 5: 239; 1973.
164.Duffy JV, Hui E, Hartmann B. J Appl Polym Sci 32: 4353; 1986.
165.Flynn JH, Wall LA. Polym Lett 5: 192; 1967.
166.Qzawa J. Bull Chem Soc Jpn 38: 1881; 1965.
167.Flynn JH, Wall LA. Polym Lett 4: 323; 1966.
168.Doyle CD. J Appl Polym Sci 6: 639; 1962.
169.Kissinger HE. Anal Chem 29: 1702; 1957.
170.Mcnell IC. Eur Polym J 3: 409; 1967.
171.Mcnell IC. Eur Polym J 6: 373; 1970.
172.Manring LE. Macromol 22: 2673; 1989.
173.Jellinek HHG, Luh MD. J Phy Chem 70: 3672; 1966.
174.Jellinek HHG, Kachi H. J Polym Sci 23: 87; 1968.
175.Jellinek HHG, Luh MD. Makromol Chem 115: 89; 1968.
176.Hu YH, Chen CY. Polym Degrad Stab 82: 81; 2003.
177.Lee DC, Jang LW. J Appl Polym Sci 61: 1117; 1996.
178.Mayo FR, Lewis FM. J Am Chem Soc 66: 1594; 1944.
179.Fineman M, Ross SD. J Polym Sci 2: 259; 1950.
180.Kelen T, Tüdös F. J Macromol Sci Chem A9(1): 1; 1975.
181.Joshi RM, Joshi SG. J Macromol Sci Chem A5(8): 1329; 1971.
182.Leu TS, Wang CS. J Appl Polym Sci 92: 410; 2004.
183.Antony R, Pillai CHS. J Appl Polym Sci 49: 2129; 1993.
184.Wang TL, Cho YL, Kuo PL. J Appl Polym Sci 82: 343; 2001.
185.Pavia DL, Lampman GM, Kriz GS. Introduction to Spectroscopy - A Guide For
Students Of Organic Chemistry. 2nd ed. Orlando: Saunders; 1996.
186.Liaw DJ, Shen WC. Angew Makromol Chem 214: 169; 1994.
187.Kishore K, Annakutty KS, Mallick IM. Polymer 29: 762; 1988.
188.Annakutty KS, Kishore K. Polymer 29: 1273; 1988.
189.Hsiue GH, Shiao SJ, Wei HF, Kuo WJ, Sha YA. J Appl Polym Sci 79: 342; 2001.
190.Nyquist RA. Appl Spectrosc 11: 161; 1957.
191.Bugajny M, Bourbigot S. Polym Int 48: 264; 1999.
192.Bourbigot S, Bras ML, Delobel R, Tremillom JM. J Chem Soc Faraday Trans
92: 3435; 1996.
193.Zhu S, Shi W. Polym Degrad Stab 80: 217; 2003.
194.Le Bras M, Bourbigot S, Revel B. J Mater Sci 34: 5777; 1999.
195.Xie R, Qu B, Hu K. Polym Degrad Stab 72: 313; 2001.
196.Setnescu R, Jipa S, Setnescu T, Kappel W, Kobayashi S, Osawa Z. Carbon 37:
1; 1999.
197.Duquesne S, Lefebvre J, Seeley G, Camino G, Delobel R, Bras ML. Polym
Degrad Stab 85: 883; 2004.
198.Fyfe CA, McKinnon MS. Macromolecules 19: 1909; 1986.
199.Georgiev GS, Iliev SB, McNeill IC. Polym Degrad Stab 52: 81; 1996.
200.Bajaj P, Goyal M, Chavan RB. J Appl Polym Sci 62: 423; 1994.
201.Lazzari M, Kitayama T, He SB, Hatada K, Chiantore O. Polym Bull 39: 85;
1997.
202.McNeill IC, Ahmed S, Memeta L. Polym Degrad Stab 47: 423; 1995.
203.Solomons TWG. Fundamentals of Organic Chemistry. 5th ed. New York: Wiley;
1996.
204.Cody GD, Alexander CMO’D. Geochim Cosmochim Acta 69: 1085; 2005.
205.Freitas JCC, Emmerich FG, Cernicchiaro GRC, Sampaio LC, Bonagamba TJ.
Solid State Nucl Magn Reson 20: 61; 2001.
206.Taylor HS, Tobolsky AV. J Am Chem Soc 67: 2063; 1945.
207.Lehmann FA, Braner GM. Anal Chem 33 : 673; 1961.
208.Barlow A, Lehrle RS, Robb JC. Polymer 8: 537; 1967.