簡易檢索 / 詳目顯示

研究生: 林育銘
Lin, Yu-Ming
論文名稱: 智能行動外骨骼輔具之電路系統整合設計及電量估測
Design of an Integrated Circuit System and State of Charge Estimation for Intelligent Mobility Exoskeleton Assistive Devices
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 93
中文關鍵詞: 下肢外骨骼輔具系統電量估測深度學習粒子群最佳化
外文關鍵詞: Lower limb exoskeleton system, State of Charge Estimation, Deep Learning, Particle Swarm Optimization
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步,可穿戴式機器人技術逐漸成熟,許多輔助人體行為的電子產品如雨後春筍般推出,市面上有許多下肢外骨骼的相關產品,以消費者的角度來看,除了產品的性能外,系統運行的時間也是一個至關重要的考量因素。由於外骨骼輔具系統在驅動上需要仰賴電池的供給,電量的消耗就成為影響輔具系統的運行的關鍵,能夠準確地估測電量是一個重要的因素。然而,估測電量是非常困難的,因為電池受到負載、溫度和老化的影響,導致每次充、放電幅度不一致的情況。一個良好的電量估測方法,可以延長系統壽命並且減少電池過度放電的問題。因此,本論文使用深度學習的方式估測電量,原因是它可以更容易地適應電池充、放電狀態的非線性特性。此外,本文設計了外骨骼系統的驅動板和無線藍芽鞋墊驅動板,以驅動感測器從人體收集生理信號,用於步態算法的預測。通過軟硬體整合,開發一套下肢外骨骼系統。

    With the advancement of technology, wearable robot technology has gradually matured, and many electronic robot products that assist humans have sprung up like mushrooms after the rain on the market. There are many lower limb exoskeleton products on the market. From the consumer's perspective, in addition to the performance of the product, the duration time of system is also an important consideration. Since exoskeleton assistive systems rely on battery power for operation, the system's power consumption becomes an important factor affecting the assistive system. Accurately estimating the battery state of charge is important. However, it is difficult to estimate the battery state of charge because the battery is affected by load, temperature, and aging, leading to inconsistent charging and discharging every time. A great method of state of charge estimation can increase system life and decrease battery over-discharge. Consequently, this thesis uses deep learning methods to estimate the battery state of charge because it can more easily adapt to the nonlinear characteristics of battery state of charge. Besides, this thesis design the exoskeleton system's driver board and the wireless Bluetooth insole driver board to operate sensors to collect physiological signals from human body for gait algorithm predictions. Through the integration of software and hardware, a lower limb exoskeleton system is developed.

    摘 要 I Extended Abstract II 誌謝 XIX 表目錄 XXIII 圖目錄 XXIV 第一章 緒論 1 1-1 研究背景 1 1-2 國內外文獻回顧 2 1-3 研究動機與目的 4 1-4 論文架構 5 第二章 相關原理與系統介紹 6 2-1 簡介 6 2-2 電池相關定義和不同電量狀態估測方法介紹 6 2-2-1電池相關定義 6 2-2-2電量狀態估測方法介紹 7 2-2-3優缺點比較 11 2-3演算法介紹與應用 11 2-3-1長短期期記憶演算法(Long Short-Term Memory,LSTM) 11 2-3-2粒子群優化演算法(Particle Swarm Otimization,PSO) 14 2-3-3 ONNX文件格式(Open Neural Network Exchange) 16 2-4電路系統與感測器介紹 16 2-4-1系統核心 17 2-4-2馬達選用 18 2-4-3 MPU 6050模組 20 2-5無線藍芽鞋墊系統介紹 21 2-5-1感測器介紹 22 2-5-2感測器擺放位置與特徵參數介紹 22 第三章 軟硬體設計 24 3-1前言 24 3-2電池資料集預處理 24 3-2-1缺失值處理和正規化 25 3-2-2滑動窗口切割 26 3-3電量狀態估測模型建立 27 3-4電路設計與規劃 29 3-4-1系統驅動電路設計 29 3-4-2無線藍芽鞋墊驅動電路 35 3-5即時電量狀態估測 38 第四章 實驗與結果討論 40 4-1實驗動機與目的 40 4-2實驗模型與評估指標介紹 40 4-2-1 PSO-LSTM模型訓練流程圖 41 4-2-2評估指標 42 4-3靜態電量估測實驗 43 4-3-1實驗流程 44 4-3-2恆定電流放電與SOC 45 4-3-3雙層LSTM靜態估測結果分析 47 4-3-3 PSO-LSTM靜態估測結果分析 49 4-4動態電量估測實驗 52 4-4-1動態電流放電資料集與SOC 52 4-4-2 LSTM動態估測結果分析 54 4-4-3 PSO-LSTM動態估測結果分析 56 4-5結果討論 59 第五章 結論與未來展望 60 5-1結論 60 5-2未來展望 61 參考文獻 63

    [1] S. K. Banala, S. H. Kim, S. K. Agrawal, and J. P. Scholz, "Robot assisted gait training with active leg exoskeleton (ALEX)," IEEE transactions on neural systems and rehabilitation engineering, vol. 17, no. 1, pp. 2-8, 2008.
    [2] H. Kawamoto, S. Kanbe, and Y. Sankai, "Power assist method for HAL-3 estimating operator's intention based on motion information," in The 12th IEEE International Workshop on Robot and Human Interactive Communication, 2003. Proceedings. ROMAN 2003., 2003: IEEE, pp. 67-72.
    [3] A. Zoss, H. Kazerooni, and A. Chu, "On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX)," in 2005 IEEE/RSJ international conference on intelligent robots and systems, 2005: IEEE, pp. 3465-3472.
    [4] M. Manas, R. Yadav, and R. K. Dubey, "Designing a battery Management system for electric vehicles: A congregated approach," Journal of Energy Storage, vol. 74, p. 109439, 2023.
    [5] U. K. Das et al., "Advancement of lithium-ion battery cells voltage equalization techniques: A review," Renewable and Sustainable Energy Reviews, vol. 134, p. 110227, 2020.
    [6] J. Meng et al., "An overview and comparison of online implementable SOC estimation methods for lithium-ion battery," IEEE Transactions on Industry Applications, vol. 54, no. 2, pp. 1583-1591, 2017.
    [7] A. Singh, K. Pal, and C. Vishwakarma, "State of charge estimation techniques of Li-ion battery of electric vehicles," e-Prime-Advances in Electrical Engineering, Electronics and Energy, vol. 6, p. 100328, 2023.
    [8] K. S. Ng, C.-S. Moo, Y.-P. Chen, and Y.-C. Hsieh, "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied energy, vol. 86, no. 9, pp. 1506-1511, 2009.
    [9] F. Zheng, Y. Xing, J. Jiang, B. Sun, J. Kim, and M. Pecht, "Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries," Applied energy, vol. 183, pp. 513-525, 2016.
    [10] Y. Xing, W. He, M. Pecht, and K. L. Tsui, "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied energy, vol. 113, pp. 106-115, 2014.
    [11] J. Wang et al., "Lithium-ion battery state-of-charge estimation using electrochemical model with sensitive parameters adjustment," Batteries, vol. 9, no. 3, p. 180, 2023.

    [12] G. L. Plett, "Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Background," Journal of Power sources, vol. 134, no. 2, pp. 252-261, 2004.
    [13] G. L. Plett,"Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification, " Journal of Power sources, vol. 134, no. 2, pp. 262-276, 2004.
    [14] G. L. Plett, "Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation," Journal of Power sources, vol. 134, no. 2, pp. 277-292, 2004.
    [15] S. Sepasi, R. Ghorbani, and B. Y. Liaw, "A novel on-board state-of-charge estimation method for aged Li-ion batteries based on model adaptive extended Kalman filter," Journal of Power Sources, vol. 245, pp. 337-344, 2014.
    [16] E. Chemali, P. J. Kollmeyer, M. Preindl, and A. Emadi, "State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach," Journal of Power Sources, vol. 400, pp. 242-255, 2018.
    [17] D. N. How, M. Hannan, M. H. Lipu, and P. J. Ker, "State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review," Ieee Access, vol. 7, pp. 136116-136136, 2019.
    [18] R. Li, W. Li, and H. Zhang, "State of Health and Charge Estimation Based on Adaptive Boosting integrated with particle swarm optimization/support vector machine (AdaBoost-PSO-SVM) Model for Lithium-ion Batteries," International Journal of Electrochemical Science, vol. 17, no. 2, p. 220212, 2022.
    [19] S. El Fallah, J. Kharbach, Z. Hammouch, A. Rezzouk, and M. O. Jamil, "State of charge estimation of an electric vehicle’s battery using Deep Neural Networks: Simulation and experimental results," Journal of Energy Storage, vol. 62, p. 106904, 2023.
    [20] A. Bhattacharjee, A. Verma, S. Mishra, and T. K. Saha, "Estimating state of charge for xEV batteries using 1D convolutional neural networks and transfer learning," IEEE Transactions on Vehicular Technology, vol. 70, no. 4, pp. 3123-3135, 2021.
    [21] E. Chemali, P. J. Kollmeyer, M. Preindl, R. Ahmed, and A. Emadi, "Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries," IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6730-6739, 2017.
    [22] M. Danko, J. Adamec, M. Taraba, and P. Drgona, "Overview of batteries State of Charge estimation methods," Transportation Research Procedia, vol. 40, pp. 186-192, 2019.
    [23] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.
    [24] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN'95-international conference on neural networks, 1995, vol. 4: ieee, pp. 1942-1948.
    [25] H. Yali and W. Xingsong, "Biomechanics study of human lower limb walking: Implication for design of power-assisted robot," in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010: IEEE, pp. 3398-3403.
    [26] 蔡宇森, "智能行動外骨骼輔具之人類步態分析與轉換區間分類" 碩士, 電機工程學系, 國立成功大學, 台南市, 2023.
    [27] X. Ren, S. Liu, X. Yu, and X. Dong, "A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM," Energy, vol. 234, p. 121236, 2021.
    [28] TEXAS INSTRUMENTS, “LM2596 SIMPLE SWITCHER^® Power Converter 150-kHz 3-A Step-Down Voltage Regulator Datasheet”, 2023.
    [29] NXP Semiconductors, “Application Hints Standalone high speed CAN transceiver ”, 2015.
    [30] MICROCHIP, “Stand-Alone CAN Controller with SPI Interface ”, 2019.
    [31] TEXAS INSTRUMENTS, “Very Low Noise, 24-Bit Analog-to-Digital Converter”, 2013
    [32] TEXAS INSTRUMENTS, “LMR62014 SIMPLE SWITCHER^® 20Vout,1.4A Step-Up Voltage Regulator in SOT-23 Datasheet”, 2023.
    [33] P. Kollmeyer, C. Vidal, M. Naguib, and M. Skells, "LG 18650HG2 Li-ion battery data and example deep neural network xEV SOC estimator script," Mendeley Data, vol. 3, p. 2020, 2020.
    [34] X. Ren, S. Liu, X. Yu, and X. Dong, "A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM," Energy, vol. 234, p. 121236, 2021.
    [35] X. Hu, F. Feng, K. Liu, L. Zhang, J. Xie, and B. Liu, "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, vol. 114, p. 109334, 2019.
    [36] E. Chemali, P. J. Kollmeyer, M. Preindl, R. Ahmed, and A. Emadi, "Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries," IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6730-6739, 2017.

    無法下載圖示 校內:2029-08-12公開
    校外:2029-08-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE