簡易檢索 / 詳目顯示

研究生: 歐允斌
Ou, Yun Pin
論文名稱: 以溶液燃燒合成法製備碳包覆氮化鋁陶瓷之研究
A Study on Solution Combustion Synthesis of Aluminum Nitride Coated Carbon
指導教授: 李文熙
Lee, Wen-Xi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 96
中文關鍵詞: 碳包覆氮化鋁導熱率燃燒合成
外文關鍵詞: Carbon Coated, Aluminum Nitride, Thermal Conductivity, SHS
相關次數: 點閱:106下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鋁陶瓷具有高導熱、高絕緣、低介電常數和低熱膨脹係數等優異性質,因此在電子基板方面有很大的應用性,但由於氮化鋁粉體的零售價格相當貴,使氮化鋁材料難以普及。

    本實驗期望以燃燒合成法(SHS) 熱處理800°C、900°C以及1000°C期能生成石墨,同時也是一導熱性能相當好的材料,來包覆氮化鋁粉體,並改善其各種性能,達到低成本的合成及應用。

    首先將Scruse加入70%硝酸中,溶解後再加入氮化鋁粉體,均勻混合後兩階段烤乾,後在氬氣氣氛中熱處理,最後壓胚成形。完成後元件施以各種量測,包括:密度及收縮率、晶相、顯微結構、介電性質和導熱率……等等。

    實驗結果發現,雖然密度及收縮率會隨溫度上升而增加,但其效果並不明顯。X-ray繞射結果也顯示,當碳源的添加量越多時,會有碳原子取代AlN中的氮,而使其晶格結構改變,造成XRD峰值偏移(Peak Shift)。SEM結果顯示出燒結體內有很多的孔隙,且隨溫度升高,孔隙會越明顯。在介電性質方面,發現碳的添加並無助於介電性質的提升,反倒是在添加濃度為25wt%,且燒結溫度為800°C時可得最佳之介電常數13.17,及介電損耗0.314,最後吾人以在800°C熱處理下添加前驅物濃度為35wt%所得之成品量測導熱率為1.048 W/m•K。

    Great electric insulation, high thermal conductivity, low dielectric constant, and low thermal expansion coefficient make AlN a very promising material for electric applications. Due to the high cost of the material, it is hard to be popular.
    In the study, we sintered the precursor-coated AlN powder at 800°C、900°C and 1000°C by SHS in order to obtain carbon-coated AlN powder for lower-cost synthesis use and further applications.
    We add sucrose in the 70% nitric acid solution first, wait until it was fully dissolved, then add AlN powder in the solution. After two steps of drying, it was sintered under Ar atmosphere for 2 hours. At last, we studied the density, grain, microstructure, dielectric properties and thermal conductivity with the product.
    We found that although the density and shrinkage rate increase as the sintered temperature increases, but it was not apparent. The X-ray patterns showed as we add more carbon precursor, the more carbon atom will substitute the “N” atom in the AlN crystal structure during the whole combustion process which will result in peak shift. The SEM also showed pores and defects from breaking plane of the product. For dielectric properties, we found as we increased the carbon precursor concentration, the dielectric properties didn’t get improved. We obtained the best dielectric constant 13.17 and dielectric loss 0.314 with 25wt% precursor concentration sintered at 800°C. At last, we obtained the thermal conductivity 1.048 W/m•K from the sample synthesized at 800°C. with 35wt% precursor added.

    摘要 II ABSTRACT V 目錄 VIII 圖目錄 XIII 表目錄 XI 第1章 緒論 1 1-1 前言 1 1-2 基板材料簡介 2 1-3 氮化鋁陶瓷 4 1-4 研究背景與動機 5 第2章 理論基礎與文獻回顧 7 2-1 熱介面材料市場概況 7 2-2 散熱基板市場概況 13 2-3 氮化鋁特性 16 2-4 石墨(GRAPHITE) 18 2-5 熱傳導機構[16] 20 2-6 碳的披覆 22 2-7 溶液燃燒合成法 23 2-8 陶瓷元件材料與製程 25 2-8-1 溶劑(Solvent) 26 2-8-2 分散劑(Dispersant) 27 2-8-3 黏結劑(Binder) 27 2-8-4 排膠(Binder burn out) 28 第3章 實驗步驟與器材 29 3-1 初始粉末原料及藥品 29 3-2 實驗流程方法與設備介紹 31 3-2-1 粉末配製 33 3-2-2 球磨(Ball mill) 37 3-2-3 PVA黏結劑造粒 37 3-2-4 過篩與加壓成型 38 3-2-5 排膠(BBO)與燃燒合成(Combution Synthesis) 40 3-2-6 沾銀端電極(Ag Dipping)與熱處理(Curing) 43 3-3 量測方法與分析儀器 43 3-3-1 收縮率(Shrinkage rate)計算 44 3-3-2 阿基米德(Archimedes)密度及孔隙率量測 44 3-3-3 場發射型掃瞄式電子顯微鏡 45 3-3-4 阻抗分析儀(Impedance Analyzer) 49 3-3-5 X-Ray繞射儀(X-Ray Diffraction;XRD)[41] 51 第4章 結果與討論 54 4-1 不同碳前驅物濃度添加對R值的影響 54 4-2 ALN/C塊材之微結構分析 61 4-3 TEM分析 65 4-4 介電性質分析 67 4-5 XRD分析 75 4-6 線收縮率、體密度及孔隙率分析 85 4-7 熱傳導值分析 91 第5章 結論與未來展望 92 5-1 結論 92 參考文獻 94

    [1] F. Miyashiro, N. Fwase, A. Tsuge, F. Ueno, M. Nakahashi and T. Takahashi, “High thermal conductivity Aluminum Nitride Ceramic Substrates and Packages”, IEEE Trans. Comp.., Hybrids, Manuf., Technol., 13, 313, June (1990).
    [2] 林瑞明,”氮化鋁陶瓷材料之微波燒結與傳統燒結研究”,成功大學碩士論文九十二年畢業。
    [3] L. M. Sheppard, Ceramic Bulletin, 69, 1801, (1990).
    [4] S. Surnev, D. Lepkova, and A. Yoleva, “Influence of the science additives on the phase composition and the thermal conductivity of aluminum nitride ceramics”, Mater. Sci. and Eng., 10, 35, (1991).
    [5] The Dow Chemical Company, 美國專利第593310號, January 31, (1996).
    [6] K. Watari, “Densification and Thermal Conductivity of AlN Doped with Y2O3 , CaO and Li2O“, J. Am. Ceram. Soc., 79, 3103, (1996).
    [7] K. Watari, “Effect sintering aids for low-temperature sintering of AlN ceramics”, J. Mater. Res., 14, (1999).
    [8] Y. Liu, “ Low-temperature sintering of aluminum nitride with YF3-CaF2 binary additive.”, Journal of Materials science letters, 18, 703, (1999)
    [9] G. Xu, H. Zhuang, J. Cai, and S. Xu, “Microwave sintering of SHS-produced AlN powders”, Journal of Materials Synthesis and Processing, 4, 307, (1996)
    [10] 陳信吉,”氮化鋁表面披覆之低溫燒結研究”,成功大學碩士論文83年畢業。
    [11] Smisek M., Cerny S., “Active Carbon; manufacture properties and applications.“, Amsterdam, 1970.
    [12] Balon ID., Khavkin VI, Antipov VM. Blast-furnace coke size.Metallurgist 1977.
    [13] Wolff S, Wang MJ., Carbon black reinforcement of elastomers. In: Donnet JB., Bansal RC., Wang MJ., editors. Carbon Black Science and Technology. CRC Press, 1993. P. 289-98.
    [14] Gallego N.C., Klett J.W., Carbon foams for thermal management. Carbon, 2003.
    [15] Friedrich J.M., Ponce-de-Leon C., Reade G.W., Walsh F.C.. Reticulated vitreous carbon as an electrode material. J. Electroanal Chem 2004.
    [16] 林瑞明,”氮化鋁陶瓷材料之微波燒結與傳統燒結研究”,成功大學碩士論文九十二年畢業。
    [17] 黃昌偉,”陶瓷材料之熱性質分析”,精密陶瓷特性及檢測分析,10.1-10.54
    [18] W. J. Kim, D. K. Kim, and C. H. Kim, “Coating of Al2O3 Additive on AlN powder and Its Effect on the Thermal Conductivity of AlN Ceramics”, Journal of Materials Synthesis and Processing, 3[1], 39-48, (1995)
    [19] Leon Y., C.A. Scaroni, A.W., Radovic L.R.. “Physicochemical characterization of carbon-coated alumina.” J Coll. Inter Sci. 1992.
    [20] Inagaki M, Miura H, Konno H. “A new simple process for carbon coating of ceramic particles using poly vinyl chloride.” J Euro Ceram Soc. 1998.
    [21] Inagaki M, Kobayashi S, Kojin F, Tanaka N, Morishita T, Tryba B. “Pore structure of carbons coated on ceramic particles.” Carbon 2004.
    [22] Lin L, Lin W, Zhu YX, Zhao BY, Xei YC. “Uniformly carbon-coated alumina and its surface characteristics.” Langmuir, 2005.
    [23] Sharanda L.F., Plyuto Y.V., Babich I.V., Plyuto I.V., Shpak A.P., Stoch J, et al. “Synthesis and characterization of hybrid carbon-alumina support.” Appl. Surf Sci. 2006.
    [24] Patila KC, Arunab ST, Mimania T. Combustion synthesis: an update. Curr. Opini Solid State Mater. Sci. 2002.
    [25] J. F. Crider, “Self-Propagating High Temperature Synthesis Method-A Soviet Method for Producing Ceramic Materials.” Ceram. Eng. Sci. Proc. 3,519, (1982)
    [26] S. Kumar, Key Engineering Materials, 56, 183, (1991).
    [27] 謝琮瀚,”氮化鋁陶瓷材料之微波燒結研究”,成功大學碩士論文九十三年畢業。
    [28] G. Besendorfer, A. Roosen, C. Modes, T. Betz, “Factors Influencing the Green Body Properties and Shrinkage Tolerance of LTCC Green Tapes,” Int. J. App. Ceram. Technol., 4, 53–59, 2007.
    [29] P. Nahass, W. E. Rhine, R. L. Pober, H. K. Bowen, W. L. Robbins, K.M. Nair, R. Pohanka, R.C. Buchanan, Ceram. Trans., 15, 355, 1990.
    [30] R. Moreno, “The Role of Slip Additives in Tape Casting Technology: Part I-Solvents and Dispersants,” Am. Ceram. Soc. Bull., 71, 1521–1531, 1992.
    [31] D.J. Shaw, Colloid stability, in Colloid and Surface Chemistry, 4th edn, Butterworth - Heinemann, Oxford, 210, 1992.
    [32] K. Nagata, “Rheological Behavior of Suspension and Properties of Green Sheet Effect of Compatibility between Dispersant and Binder,” J. Ceram. Soc. Jpn., 101, 1271–1275, 1992.
    [33] N. Ushifusa, M. Cima, “Aqueous Processing of Mullite-Containing Green Sheets,” J. Am. Ceram. Sot., 74, 2443–2447, 1991.
    [34] K. Nagata, S. Hirano, G.L. Messing, H. Hausner, Ceram. Trans., 22, 335, 1991.
    [35] K. Nagata, M. J. Cima, Ceram. Trans., 26, 205, 1992.
    [36] Nomura, S., Tomaya, K. and Kaneta, K., “Effect of Mn doping on the dielectric properties of Ba2Ti9O20 ceramics at microwave frequencies,” Jpn. J. App. Phys., 22, 1125–1128, 1983.
    [37] Z. Y. Fang, Y. C. Liu, Y. Wu and H.P. Zhou: J. Mater. Sci. Lett. Vol. 19 (2000), pp. 95.
    [38] Relva C. Buchanan, “Ceramic Materials for Electronic”, Marcel Dekker Inc.
    [39] Jana, Prasanta, and V. Ganesan. "The production of a carbon-coated alumina foam." Carbon 49.10 (2011).

    無法下載圖示 校內:2023-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE