簡易檢索 / 詳目顯示

研究生: 郭庭瑋
Guo, Ting-Wei
論文名稱: 車用無線電力傳輸系統之金屬異物偵測研究
A Study on Metal Object Detection in Electric Vehicle Wireless Charging System
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 81
中文關鍵詞: LCC補償無線充電金屬異物渦流效應
外文關鍵詞: Metal Object Detection, Eddy Current Effect, Wireless Power Transfer, Alternating Magnetic Field
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對車用無線電力傳輸系統金屬異物檢測,研製一套基於平衡線圈阻抗變化之金屬檢測系統。此系統利用金屬放置在高頻交變磁場中,因渦流效應造成鄰近的磁場削弱,使設置在發射線圈的檢測線圈的阻抗產生變化。利用串並聯等效電路及運算放大器,將阻抗變化轉換成電壓訊號,因而準確檢測出金屬異物混入能量傳輸區域。本論文有別於一般檢測線圈陣列系統,透過阻抗變化檢測,提高檢測的靈敏度及範圍。
    本論文利用 ANSYS Maxwell 3D軟體建立無線充電線圈及檢測線圈,並結合simplorer模擬軟體建立全橋換流器及LCC補償架構進行磁電耦合,透過實驗結果比較,達成無線電力傳輸過程中,檢測金屬異物混入時,能立即停止無線傳能。
    關鍵字: LCC補償、無線充電、金屬異物、渦流效應

    This thesis proposes a new metal object detection (MOD) technique for wireless power transfer system. In such a system, when metal pieces are placed in high frequent alternating magnetic field, it causes changes of magnetic field and impedance of detection coil. The detection system is formed with series-resonant circuit, parallel-resonant circuit and operating amplifier in order to turn impedance changes into voltage signal and detect foreign metal bodies precisely in wireless power transfer process. This thesis applies ANSYS Maxwell 3D software to build up the models of transmitting/receiving coils and detection coils. SIMPLORER simulation software is then used to set up a full bridge inverter and LCC compensation topology to proceed electromagnetic coupling. Finally, a 1 kW prototype circuit of LCC wireless power transfer system (WPTS) is implemented and the feasibility of the proposed metal object detection technique is validated.

    Keyword: Metal Object Detection, Eddy Current Effect, Wireless Power Transfer, Alternating Magnetic Field

    摘要 I 致謝 X 目錄 XI 圖目錄 XIV 表目錄 XVIII 符號表 XIX 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.3 研究動機及目的 6 1.4論文架構 7 第二章 無線電力傳輸補償分析及系統建置 8 2.1 鬆耦合變壓器模型 8 2.2 無線電力傳輸補償架構 13 2.2.1 傳統補償拓譜分析 14 2.2.2 T型電路之原理 20 2.2.3 T型電路之對稱特性 22 2.3 LCC-S補償拓譜系統 24 第三章 金屬異物之影響及檢測方式 27 3.1金屬異物的等效模型 27 3.2 金屬異物之影響分析 30 3.2.1導磁性金屬 32 3.2.2 非導磁性金屬 37 3.3.1 串聯諧振 42 3.3.2 並聯諧振 47 3.3.3 檢測線圈之設計 53 第四章 系統模擬及實驗結果 58 4.1 無線電力傳輸系統之模擬及實驗結果 58 4.2 加入金屬檢測之無線電力傳輸系統模擬及實驗結果 63 第五章 結論 75 5.1結論 75 5.2建議 76 參考文獻 77

    [1] J. Larminie and J. Lowry (2003). Electric Vehicle Technology Explained, Wiley-IEEE Press.
    [2] A. Y. Saber and G. K. Venayagamoorthy (2009), “One million plug-in electric vehicles on the road by 2015,” in Proceedings of 12th International IEEE Conference on Intelligent Transportation Systems, pp. 1-7.
    [3] Understanding the Electric Vehicle Landscape to 2020. Accessed: Feb. 22, 2016.[Online].Available:https://www.iea.org/publications/freepublications/publication/
    [4] M. Yilmaz and P. T. Krein (2013), “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2151–2169.
    [5] O. C. Onar, and L. E. Seiber (2013), "Oak Ridge National Laboratory Wireless Power Transfer Development for Sustainable Campus Initiative,” in Proceedings of IEEE Transportation Electrification Conference, MI, pp. 1-8.
    [6] Y. Liu and J. Fan, T. Zuo (2017), “Simulation study on series model of wireless power transfer via magnetic resonance coupling,” in Proceedings of IEEE 3rd Information Technology and Mechatronics Engineering Conference, pp. 191-195.
    [7] A. P. Sample, D. T. Meyer and J. R. Smith (2011), “Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer,” IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 544-554.
    [8] H. Hao, G. A. Covic and J. T. Boys (2014), “An Approximate Dynamic Model of LCL-Based Inductive Power Transfer Power Supplies,” IEEE Transactions on Power Electronics, vol. 29, no. 10, pp. 5554-5567.
    [9] V. T. Nguyen, S. Yu, S. Yim and K. Park (2017), “Optimizing compensation topologies for inductive power transfer at different mutual inductances,” IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, pp. 153-156.
    [10] TI Training (2018), “Introduction to Foreign Object Detection (FOD) for Wireless Power,” [Online]. Available: https://training.ti.com/introduction-foreignobject-detection-fod-wireless-power.
    [11] W. Han, K. T. Chau, C. Jiang and W. Liu (2018), “All-Metal Domestic Induction Heating Using Single-Frequency Double-Layer Coils,” IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-5.
    [12] D. H. Childress (2000). The Tesla Papers: Nikola Tesla on free energy & wireless transmission of power, Adventures Unlimited Press.
    [13] J. O. McSpadden and J. C. Mankins (2002), “Space solar power programs and microwave wireless power transmission technology,” IEEE Microwave Magazine, vol. 3, no. 4, pp. 46-57.
    [14] A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, and M. Soljačić (2007), “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, pp. 83-86.
    [15] S. Lee and R. D. Lorenz (2011.), “Development and Validation of Model for 95%-Efficiency 220-W Wireless Power Transfer Over a 30-cm Air Gap,” IEEE Transactions on Industry Applications, vol. 47, no. 6, pp. 2495-2504
    [16] N. H. Kutkut and K. W. Klontz (1997), “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proceedings of Applied Power Electronics Conference, pp. 841-847.
    [17] A. Khaligh and S. Dusmez (2012), “Comprehensive Topological Analysis of Conductive and Inductive Charging Solutions for Plug-In Electric Vehicles,” IEEE Transactions on Vehicular Technology, vol. 61, no. 8, pp. 3475-3489.
    [18] W. Zhang, S. Wong, C. K. Tse and Q. Chen (2014), “Analysis and Comparison of Secondary Series- and Parallel-Compensated Inductive Power Transfer Systems Operating for Optimal Efficiency and Load-Independent Voltage-Transfer Ratio,” IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2979-2990.
    [19] C. Duan, C. Jiang, A. Taylor and K. Bai (2013), “Design of a zero-voltage-switching large-air-gap wireless charger with low electrical stress for Plugin Hybrid Electric Vehicles,” in Proceedings of IEEE Transportation Electrification Conference, pp. 1-5.
    [20] A. P. Hu, J. T. Boys and G. A. Covic (2014), “ZVS frequency analysis of a current-fed resonant converter,” in Proceedings of 7th IEEE International Power Electronics Conference, pp. 217-221.
    [21] C. S. Wang, G. A. Covic and O. H. Stielau (2014), “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 148-157.
    [22] J. L. Villa, J. Sallan, J. F. Sanz Osorio and A. Llombart (2012), “High-Misalignment Tolerant Compensation Topology For ICPT Systems,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 945-951
    [23] C. S. Tang, Y. Sun, Y. G. Su, S. K. Nguang and A. P. Hu (2009), “Determining Multiple Steady-State ZCS Operating Points of a Switch-Mode Contactless Power Transfer System,“ IEEE Transactions on Power Electronics, vol. 24, no. 2, pp. 416-425.
    [24] G. Ombach (2013), “Design considerations for wireless charging system for electric and plug-in hybrid vehicles,“ in Proceedings of IET Hybrid and Electric Vehicles Conference, pp. 1-4.
    [25] G. C. Jang, S. Y. Jeong, H. G. Kwak and C. T. Rim (2016), “Metal object detection circuit with non-overlapped coils for wireless EV chargers,“ in Proceedings of IEEE 2nd Annual Southern Power Electronics Conference, 2016, pp. 1-6.
    [26] S. Fukuda, H. Nakano, Y. Murayama, T. Murakami, O. Kozakai and K. Fujimaki (2012), “A novel metal detector using the quality factor of the secondary coil for wireless power transfer systems,” IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission, pp. 241-244.
    [27] T. Imura (2016), “Simple equivalent circuit model with foreign object on wireless power transfer via magnetic resonant coupling,” in Proceedings of IEEE Conference on Antenna Measurements & Applications, pp. 367-370.
    [28] S. Y. Jeong (2019), “Self-Inductance-Based Metal Object Detection With Mistuned Resonant Circuits and Nullifying Induced Voltage for Wireless EV Chargers,” IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 748-758.
    [29] S. Y. Jeong (2015), “DQ-quadrature power supply coil sets with large tolerances for wireless stationary EV chargers,” IEEE PELS Workshop on Emerging Technologies, pp. 1-6.

    無法下載圖示 校內:2024-01-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE