簡易檢索 / 詳目顯示

研究生: 楊松輯
Yang, Song-Ji
論文名稱: 使用雙重取樣與依比例減少技巧管線式類比數位轉換器之設計
Design of Pipelined A/D Converter Using Double-sampling and Scaling Techniques
指導教授: 賴源泰
Lai, Yan-Tai
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 73
中文關鍵詞: 管線式類比數位轉換器雙重取樣
外文關鍵詞: Pipelined ADC, Double-sampling
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,在許多應用當中皆以數位訊號處理技術來處理傳輸的資訊,因此,在接收類比訊號及數位訊號處理系統之間,類比數位轉換器成為不可或缺的元件。由於製程技術的演進與可攜性系統的應用,在類比數位轉換器中,低電壓操作及低功率消耗的需求也變得越來越重要。因此,本論文針對管線式類比數位轉換器做設計,以高取樣頻率及低功率做為考量,引入雙重取樣技術來加倍取樣頻率而不使功率消耗倍增。此外,隨著管線式類比數位轉換器的每級規格限制越來越寬鬆,再針對每級需求做設計,可進一步減少管線式類比數位轉換器的整體功率消耗。
    此類比數位轉換器藉由 TSMC 0.18um 1P6M CMOS 製程來實現一個使用雙重取樣技術之10位元100百萬赫茲管線式類比數位轉換器。所有類比電路皆以全差動輸入設計,輸入訊號為2伏特峰對峰值,操作電壓為1.8伏特。此管線式類比數位轉換器在時脈為50百萬赫茲,即取樣頻率為100百萬赫茲下,輸入訊號為1百萬赫茲弦波時,訊號對雜訊失真比(SNDR)為61.4dB。微分非線性誤差(DNL)為 +0.1/-0.3 LSB而積分非線性誤差(INL)為 +0.39/-0.38 LSB,其總功率消耗為41.4mW。

    Recently, many of the applications utilize the digital signal processing (DSP) to deal with the transmitted of the information. Therefore, the analog-to-digital converter has become indispensable component between the received analog signal and DSP system. Due to the advance of deep submicron technology and the systems portability, the low power supply and the power consumption will become an increasingly important issue in the analog-to-digital converters. Therefore, the thesis focuses on the design of pipelined ADC architecture. Then, the aim of this thesis is to investigate the design techniques of ADCs for high sampling rate applications and low power dissipation. The double-sampling technique is introduced to double the sampling rate which is not consuming two times of power. Because of the required accuracy of pipelined ADC is relaxed in the following stages, the scaling technique is also applied to each stage. Thus, the total power consumption of the pipelined ADC is further reduced.
    This 10-bit 100MS/s double-sampling pipelined ADC is implemented by TSMC 0.18um 1P6M CMOS process. All analog circuits are designed as fully differential with 2Vpp input signal and 1.8V power supply. The SNDR of pipelined ADC is 61.4dB for an input signal of 1MHz sine wave at a 50MHz clock rate i.e. a 100MS/s sampling rate. The DNL is about +0.1/-0.3 LSB, and INL is about +0.39/-0.38 LSB. The total power dissipation of pipelined ADC is about 41.4mW.

    Table of Contents Abstract I Acknowledgment IV Table of Contents V List of Figures IX List of Tables XII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 3 Chapter 2 Fundamentals of ADC 4 2.1 Introduction 4 2.2 The Concept and Performance of A/D Converter 4 2.2.1 Aliasing Effect 5 2.2.2 Ideal A/D Converter 7 2.2.3 Quantization Error 8 2.3 A/D Converter Specification 10 2.3.1 Static Specification 10 2.3.1.1 Resolution 10 2.3.1.2 Accuracy 10 2.3.1.3 Offset error 11 2.3.1.4 Gain error 11 2.3.1.5 Integral nonlinearity 11 2.3.1.6 Differential nonlinearity 12 2.3.1.7 Monotonicity 13 2.3.1.8 Missing code 13 2.3.2 Dynamic Specification 13 2.3.2.1 Sampling rate and Conversion time 13 2.3.2.2 Signal-to-Noise Ratio (SNR) 14 2.3.2.3 Signal-to-Noise and Distortion Ratio (SNDR) 15 2.3.2.4 Spurious-Free Dynamic Ratio (SFDR) 15 2.3.2.5 Effective Number of Bits (ENOB) 15 2.3.2.6 Dynamic Range (DR) 16 2.4 Architectures of High Speed ADC Overview 17 2.4.1 Flash A/D Converter 18 2.4.2 Two-Step ADC 19 2.4.3 Pipelined ADC 20 2.4.4 Comparison and Summary of High Speed ADC 22 Chapter 3 The Analysis of Pipelined ADC with the Double-Sampling Technique 24 3.1 Introduction 24 3.2 Conventional Pipelined ADC 25 3.3 Digital Error Correction Technique 27 3.4 Double Sampling Technique 30 3.4.1 Principle of Double Sampling 30 3.4.2 Non-idealities in the Double Sampling Circuit 31 3.4.2.1 Memory Effect 31 3.4.2.2 Offset Error 32 3.4.2.3 Gain Error 32 3.4.2.4 Timing Skew 32 3.5 Accuracy Requirement of Pipelined Stage 33 3.5.1 Capacitor Requirement 34 3.5.2 Op-Amp Requirement 35 Chapter 4 Design of Double-Sampling Pipelined Analog-to-Digital Converter 38 4.1 Introduction 38 4.2 Operation Amplifier 39 4.2.1 Structure of the Amplifier 39 4.3 Front-End Sample and Hold Amplifier 44 4.3.1 MOS Switch 44 4.3.2 Sample and Hold Circuit with Double-Sampling 49 4.4 Sub-ADC 51 4.4.1 Dynamic Comparator 51 4.4.2 1.5-Bit Sub-ADC 54 4.4.3 2-Bit Flash ADC 55 4.5 Multiplying Digital-to-Analog converter (MDAC) 56 4.6 Clock Generator 58 4.7 Registers and Digital Error Correction 59 4.8 Scaling Technique 61 Chapter 5 Simulation Results of Pipelined Analog-to-Digital Converter 63 5.1 Experimental Results of Pipelined ADC 63 Chapter 6 Conclusion and Future Work 68 Reference 69

    Reference

    [1] P. E. Allen and D.R Hoolberg, “CMOS Analog Circuit Design,” New York: Oxford, 2002.

    [2] D. A. Johns and K. Martin, “Analog Integrated Circuit Design,” New York: Wiley 1997.

    [3] M. Gustavsson, J. J. Wikner, and N. N. Tan, ‘CMOS Data Converter for Communications,’ Boston, MA: Kluwer Academic, 2002.

    [4] B. Razavi, “Principles of Data Conversion System Design,” New York: IEEE Press, 1995.

    [5] R. J. Baker, “CMOS Mixed-Signal Circuit Design,” New York: IEEE Press, 2002.

    [6] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14 MS/s CMOS pipeline analog-to-digital converter,” IEEE J. of Solid-State Circuits, vol. 34, pp. 599-606, May 1999.

    [7] S. H. Lewis, H. S. Fetterman, G. F. Gross Jr., R. Ramachandran, and T.R. Viswanathan, “A 10-b 20Msample/s Analog-to-Digital Converter,” IEEE J.Solid‐State Circuits, Vol. 27, pp.351‐358, March 1992.

    [8] M. E. Waltari and K. A. I. Halonen, “Circuit Techniques for Low-Voltage and High-Speed A/D Converters,” Kluwer Academic Publishers, 2002.

    [9] J. Li, “Accuracy enhancement techniques in low-voltage high-speed pipelined ADC design,” Oregon State University, Ph.D. Thesis, 2004.

    [10] I. Mehr and L. Singer, “A 55-mW, 10-bit, 40-Msample/s Nyquist-Rate CMOS ADC,” IEEE Journal of Solid-State Circuits, vol. 35, no. 3, pp. 318-325, March 2000.

    [11] S.-U. Kwak, B.-S. Song, and K. Bacrania, “A 15-b, 5-Msample/s low-spurious CMOS ADC,” IEEE Journal of Solid-State Circuits, vol. 32, no. 12, pp. 1866–1875, December 1997.

    [12] M. Dessouky, A. Kaiser, “Very low-voltage digital-audio ΔΣ modulator with 88-dB dynamic range using local switch bootstrapping,” IEEE J. Solid-State Circuits, Vol. 36, pp.349-355, Mar. 2001.

    [13] Waltari, M.; Halonen, K., “Timing skew insensitive switching for double-sampled circuit”, Circuits and Systems, 1999. ISCAS '99. Proceedings of the 1999 IEEE International Symposium, Vol 2, pp. 61 – 64, 30 May-2 June 1999.

    [14] T. Cho and P. R. Gray, “A 10b 20-Msamples/s, 35 mW pipeline A/D converter,” IEEE J. Solid-Stade Circuits, vol. 30, pp. 166-172, Mar. 1995.

    [15] M. M. Byung, K. Peter, W. B. Frederick, M. B. David, J. A. Arlo, “A 69-mW 10-bit 80-MSample/s Pipelined CMOS ADC,” IEEE J. Solid-State Circuits, Vol. 38, pp.2031-2039, Dec. 2003.

    [16] Samiran Halder, Arindrajit Ghosh, Ravi sankar Prasad, Aniban hatterjeee ,Swapna Banerjee,, “A 160MPS 8-bit Pipeline Based ADC”, VLSI Design, 2005. 18th International Conference, pp.313 - 318, 3-7 Jan. 2005.

    [17] Sung-Hyun Yang; Cheol-Hee Lee; Kyoung-Rok Cho; “A CMOS dual-modulus prescaler based on a new charge sharing free D-flip-flop ”, Proc. IEEE ASIC/SOC Conf, 2001, pp. 276-280.

    [18] A. M. Shams, T. K. Darwish, M. A. Bayoumi, “Performance Analysis of Low-Power 1-Bit CMOS Full Adder Cells,” IEEE Trans. Very Large Scale Integration Systems, Vol. 10, No. 1, pp. 20-29 Feb. 2002.

    [19] W. C. David, P. R. Gray, “A Power Optimized 13-b 5 Msamples/s Pipelined Analog-to-Digital Converter in 1.2um CMOS,” IEEE J. Solid-State Circuits, Vol.31, pp.294‐303, Mar. 1996.

    [20] Li, J. and Moon, U.K. and Semicond, N. and Salem, NH, “A 1.8-V 67-mW 10-bit 100-MS/s Pipelined ADC Using Time-Shifted CDS Technique”, IEEE J. Solid-State Circuits, vol.39, pp. 1468-1476, May.2004.

    [21] P. B. Jong, Y. M. Sang, K. W. Se, J. C. Young, H. L. Seung, “A 10-b 150-MSample/s 1.8-V 123-mW CMOS A/D converter with 400-MHz input bandwidth,” IEEE J. Solid-State Circuits, Vol. 39, pp.1335-1337, Aug. 2004.

    [22] I. Ahmed, D. A. Johns, “A 50-MS/s (35mW) to 1-kS/s (15uW) power scaleable 10-bit pipelined ADC using rapid power-on opamps and minimal bias current variation,” IEEE J. Solid‐State Circuits, Vol. 40, pp.2446-2455, Dec. 2005.

    [23] M. Yoshioka, M. Kudo, K. Gotoh, Y. Watanabe, “A 10b 125MS/s 40mW Pipelined ADC in 0.18um CMOS,” IEEE International Solid-State Circuits Conference, pp.282‐283, Feb. 2005.

    [24] Jin-Fu Lin and Soon-Jyh Chang, "A High Speed Pipelined Analog-to-Digital Converter Using Modified Time-Shifted Correlated Double Sampling Technique," IEEE International Symposium on Circuits and Systems, pp.5367-5370, 2006.

    [25] H. Y. Lee, and S. I. Liu, “A 10-bit 100MS/s pipelined ADC in 0.18μm CMOS technology,” in Proc. of IEEE Int. SOC Conf., Sep. 2007, pp. 2-5.

    [26] T. Cho, “Low-Power Low-Voltage Analog-to-Digital Conversion Techniques Using Pipelined Architectures,” UC Berkeley Phd Thesis, 1995.

    [27] Tamtrakarn, A.; Wongkomet, N.,” A 2.5-V 10-bit 40-MS/S double sampling pipeline A/D converter,” Circuits and Systems, 2002. APCCAS '02. 2002 Asia-Pacific Conference , Page(s): 419 - 424 vol.2.

    [28] Nagaraj, K.; Fetterman, H.S.; Anidjar, J.; Lewis, S.H. “A 250-mW, 8-b, 52-Msamples/s Parallel-Pipelined A/D Converter with Reduced Number of Amplifiers,” IEEE J. Solid-State Circuits, vol. 32, no. 3, pp 312-320, Mar. 1997.

    [29] T. Cho, “Low-power low-voltage analog-to-digital conversion techniques using pipelined architectures,” U.C. Berkeley Ph.D. thesis, 1995.

    [30] A. M. Abo, “Design for reliability of low-voltage, switched-capacitor circuits,” U.C. Berkeley Ph.D. Thesis, 1992.

    無法下載圖示 校內:2020-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE