研究生: |
林怡伶 Lin, Yi-Ling |
---|---|
論文名稱: |
應用共振模型於壓電式微型幫浦之不良分析 Failure Analysis of Piezoelectric Micropump Application Based on BVD Model |
指導教授: |
張凌昇
Jang, Ling-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 55 |
中文關鍵詞: | 微機電系統 、微型幫浦 、鋯鈦酸鉛驅動器 、錯誤分析 、BVD共振模型 、電性分析 |
外文關鍵詞: | Microelectromechanical systems (MEMS), Micropump, Lead zirconate titanate (PZT) actuator, Failure analysis (FA), BVD model, Electrical analysis |
相關次數: | 點閱:176 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨微機電與微製程技術日益發展,目前微全分析系統已經廣泛應用在藥物治療、醫療診斷、生化分析等上。其中,壓電材料(PZT)為致動器的微型幫浦,因擁有高效率、高形變量與應變時間短等驅動特性,最適合用來實行在高精準控制的系統上面。因此,需要一個適合的壓電等效電路來作為最佳化前置驅動器的參考資訊,使得壓電式微型幫浦在效能上有所提升,由於在微幫浦製程中,容易出現不良情形,故使用此壓電等效電路作為方便並快速檢測故障情形與有瑕疵的微型幫浦。
本研究中,以BVD model為基礎發展出新的壓電等效電路模型,其中包含傳統共振模型與一個串聯的電阻及電感。用此壓電等效電路描述PZT致動器在高電壓、低頻率的方波訊號驅動下,對於兩種不良情形所產生的電性反應,此兩種不良情形分別為正負接腳位置不同與壓電片偏移,之後將所量測到的實驗數據透過常見電路分析軟體SPICE,分析出元件參數,用來對應機械反應,了解壓電片之機械原件特性與電路元件特性之關係。最後使用光纖位移機測量位移量與實驗結果來進行比較,以驗證此壓電模組的正確性與此方式的可行性。
The field of micro-electro-mechanical systems (MEMs) are widely used in chemical, diagnostics, medicine, and biological research. The micropumps with a lead zirconate titanate (PZT) actuator, which has a fast response time and high resolution, are most likely to be applied in implementations. To improve the performance of PZT micropumps utilized in the microfluidics field, suitable models are required to enable the optimization of the PZT actuator driving circuits. Due to the failures is caused by the fabricate process easily, the equivalent circuit is used to detection the failures of the PZT actuator. This study proposes a modified Butterworth-Van Dyke (BVD) model which consists of a BVD model in series with an electrical resistance and an electrical inductance. It describes two failure situations of the PZT actuator which driven by a square pulse with a relatively high voltage and low frequency for micropump applications. The failure analysis (FA) of micropump assembling process is focus on two failures: (1) The different position of two pins bonding with silver (2) The offset center of PZT. In order to understand the relationship between the electrical elements and the mechanical elements, the electrical model is verified by the SPICE software simulation, which analyzes the parameters of the circuit and reflects the mechanical elements of the resonance model. The displacement is measured to verify the correlation between the simulation of the electrical model and the measurements of the PZT actuator under real operating conditions.
[1] B. Weigl and P. Yager, "Microfluidics: microfluidic diffusion-based separation and detection," Science, pp. 283-346.
[2] C. Chee, L. Tong and G. Steven, "A review on the modeling of piezoelectric sensors and actuators incorporated in intelligent structures," J. Intell. Mater. Syst. Struct., vol. 9, pp. 3-19, 1998.
[3] H. Andersson and A. V. D. Berg, "Microfluidic devices for cellomics: A review," Sens Actuator B Chem, vol. 92, pp. 315-325, 2003.
[4] R. Fair, A. Khlystov, V. Srinivasan, V. Pamula and K. Weaver, "Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform," proc SPIE, vol. 5597, pp. 113-124, 2004.
[5] L. Bousse, "Electrokinetic microfluidic systems," Proc SPIE, vol. 3880, pp. 2-8, 1999.
[6] Q. Cui, C. Liu and X. Zha, "Study on a piezoelectic micropump for the controlled drug delivery system," Microfluid Nanofluid, vol. 3, pp. 377-390, 2007.
[7] J. A. Tamada, M. Lesho and M. J. Tierney, "Keeping watch on glucose," IEEE Spectrum, pp. 52-57, 4 2002.
[8] E. Meng, X. Q. Wang, H. Mak and Y. C. Tai, "A check-valved silicone diaphragm pump," IEEE 13th Int. Conf. on Micro Electro Mechanical System (Miyazaki, Japan), pp. 62-67, 2000.
[9] L. Jang, Y. Li, S. Lin, Y. Hsu, W. Yao, M. Tsai and C. Hou, "A stand-alone peristaltic micropump based on piezoelectric actuation," Biomed Microdevices, vol. 9, pp. 185-194, 2007.
[10] H. V. Lintel, F. V. D. Pol and S. Bouwstra, "Piezoelectric micropump based on micromachining of silicon," Sensors Actuator A, vol. 15, pp. 153-167, 1988.
[11] F. C. M. Van de Pol, H. T. G. Van Lintel, M. Elwenspoek and J. H. J. Fluitman, "A thermopneumatic micropump based on micro-engineering techniques," Sensors Actuator A, vol. 21, pp. 198-202, 1990.
[12] O. Jeong and S. Yang, "Fabrication and test of a thermopneumatic micropump with a corrugated P+ diagram," Sensors Actuators A, vol. 83, pp. 249-255, 2000.
[13] R. Rapp, W. Schomburg, D. Maas, J. Schulz and W. Stark, "LIGA micropump for gases and liquids," Sensors Actuator A, vol. 40, pp. 57-61, 1994.
[14] R. Zengerle, J. Ulrich, S. Kluge, M. Richter and A. Richter, "A bidirectional silicon micropump," Sensors Actuator A, vol. 50, pp. 81-86, 1995.
[15] G. Fuhr, R. Hagedom, T. Merller, W. Benecke and B. Wagner, "Pumping of water solutions in microfabricated electrohydrodynamic systems," IEEE 5th Int. Workshop on, pp. 25-30, 1992.
[16] S. Boehm, W. Olthus and P. Bergveld, "A plastic micropump constructed with conventional techniques and materials," Senensors Actuators A, vol. 77, pp. 223-228, 1999.
[17] C. Chao, P. C. Huang, M. K. Chen and L. Jang, "Design and analysis of charge-recovery driving circuits for portable peristaltic micropumps with piezoelectric actuators," Sensors and Actuators A, 2011.
[18] E. Chappel, R. Allendes, F. Bianchi, G. Calcaterra, F. Cannehan, C. Conan, J. Lefrique, G.-L. Lettieri, S. Mefti, A. Noth, S. Proennecke and F. Neftel, "Industrialized functional test for insulin micropumps," Procedia Engineering, vol. 25, pp. 795-798, 2011.
[19] M. Pham and N. S. Goo, "Development of a peristaltic micropump with lightweight piezo-composite actuator membrane valves," International Journal of Aeronautical and Space Science, vol. 12, no. 1, pp. 69-77, 2011.
[20] T. T. Nguyen, M. Pham and N. S. Goo, "Development of a peristaltic micropump for bio-medical applications based on mini LIPCA," J Bionic Eng, vol. 5, pp. 135-141, 2008.
[21] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada and S. Streiffer, "Ferroelectric thin films: Review of materials, properties, and applications," J. Appl. Phys., vol. 100, no. 5, 2006.
[22] P. Muralt, "Ferroelectric thin films for micro-sensors and actuators: a review," J. Micromech Microeng, vol. 10, pp. 136-146, 2000.
[23] M. Koch, N. Harris, A. G. R. Evans, N. M. White and A. Brunnschweiler, "A novel micromachined pump based on thick-film piezoelectric actuation," Sensors and Actuator A, vol. 70, pp. 98-103, 1998.
[24] G. Feng and E. Kim, "Micropump based on PZT unimorph and one-way parylene valves," MICROMECHANICS AND MICROENGINEERING, vol. 14, pp. 429-435, 9 1 2004.
[25] J. Kan, Z. Yang, T. Peng, G. Cheng and B. Wu, "Design and test of a high-performance piezoelectric micropump for drug delivery," Sensors and Actuator A, vol. 121, pp. 156-161, 2005.
[26] J.A. Walraren, "Future challenges for MEMS failure analysis," In: Proceedings of International Test Conference, pp. 850-855, 2003.
[27] B. L. Chen, P. C. Huang, L. S. Jang and M. K. Chen, "Electrical failure analysis of peristaltic micropumps fabricated with PZT actuators," Microelectronics Reliability, vol. 52, no. 6, pp. 1080-1085, 2012.
[28] Y. Li and Z. Jiang, "An overview of reliability and failure mode analysis of microelectromechanical systems (MEMS)," Handbook of Performability Engineering, pp. 953-966, 2008.
[29] Y. R. Jeng, P. C. Tsai and T. H. Fang, "Nanomeasurement and fractal analysis of PZT ferroelectric thin films by atomic force microscopy," Microelectronic Engineering, vol. 65, pp. 406-415, 2003.
[30] W. Merlijn. van. Spengen, R. Puers, R. Mertens and I. D. Wolf, "Characterization and failure analysis of MEMS: high resolution optical investigation of small out-of-plane movements and fast vibrations," Microsystem Technologies, vol. 10, pp. 89-96, 2004.
[31] C. A. Smith and E. I. C. Jr, "Resistive contrast imaging: a new SEM mode for failure analysis," IEEE Transactions on Electron Devices Ed., vol. 33, no. 2, pp. 282-286, 1986.
[32] J. A. Walraven, E. I. C. Jr and P. Tangyunyong, "Failure analysis of MEMS using thermally-induced voltage alteration," Proceedings from the 26th ISTFA, pp. 489-496, 2000.
[33] Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society IEEE standard on piezoelectricity, New York: IEEE ANSI/IEEE Std., 1987, pp. 176-1987.
[34] H. M. S. Georgiou and R. Mrad, "Experimental and theoretical assessment of PZT modeled as RC circuit subject to variable voltage excitations," Mechatronics, vol. 14, pp. 667-674, 2004.
[35] C. Richard, D. Guyomar, D. Audigier and H. Bassaler, "Enhanced semi passive damping using continuous switching of a piezoelectric device on an inductor," Proc. SPIE, vol. 3989, 2000.
[36] O. C. Jeong, S. W. Park, S. S. Yang and J. J. H. Pak, "Fabrication of a peristaltic PDMSmicropump," Sensors and Actuators A, vol. 123, no. 4, pp. 453-458, 2005.
[37] L. S. Jang, W. H. Kan, M. K. Chen and Y. Chou, "Parameter extraction from BVD electrical model of PZT actuator of micropumps using time-domain measurement technique," Microfluid Nanofluid, vol. 7, pp. 559-568, 2009.
[38] M. Goldfarb and N. Celanovic, "Modeling piezoelectric stack actuators for control of micromanipulation," IEEE, vol. 17, pp. 69-79, 6 1997.
[39] S. Y. Wu, "Piezoelectric shunts with a parallel R-L circuit for structural damping and vibration control," Proc. SPIE, vol. 2720, 5 1996.