簡易檢索 / 詳目顯示

研究生: 韓振元
Han, Chen-Yuan
論文名稱: 改善間歇性身體晃動下之心率追蹤基於模板匹配奇異譜分析算法應用於頻率調變連續波雷達系統
Improving Heart Rate Tracking under Intermittent Body Movements based on Template-Matching Singular Spectrum Analysis Algorithm for FMCW Radar Systems
指導教授: 楊慶隆
Yang, Chin-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 110
中文關鍵詞: 隨機身體晃動非穩態雜波間歇性干擾奇異譜分析匹配濾波器人體心率追蹤
外文關鍵詞: Random body movements (RBM), non-stationary clutter, intermittent interference, singular spectrum analysis (SSA), matched filter, heart rate tracking
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一種模板匹配奇異譜分析(Template-matching Singular Spectrum Analysis, TM-SSA)演算法,用以實時(Real-time)地追蹤人體之心率。透過雷達非接觸式地量測人體生理訊號是被廣泛討論的研究議題,然而量測期間的隨機身體移動(Random body movements, RBM)引入的巨大干擾將阻礙心率辨識,而間歇性的晃動干擾(Intermittent interference)是其中一種常見於實際情境中發生的類型。它們會隨機地出現,持續數秒後又突然消失,降低晃動期間的心率追蹤可靠性。本研究提出之演算法使用三個階段的訊號處理,試圖於如此巨大的干擾中準確追蹤人體的心率,首先使用奇異譜分析消除大部分晃動的能量,並藉由重建成分(Reconstructed components,RC)的奇異值留下干擾存在與否的標示;第二階段為匹配濾波器(Matched filter),使用未干擾時前一階段提取的心跳波形作為模板,於干擾片段凸顯心率成分;最後利用心率於正常狀態下不劇烈偏移的特性,使用卡爾曼濾波器(Kalman filter)追蹤心率值,使雷達相位解調出的心率可以隨時間準確繪出其變化軌跡。實驗情境設為在30秒內存在5秒的身體晃動,使用8秒的窗口進行滑動資料擷取,以每秒為單位進行心率更新,可達成3%以下的錯誤率和0.02 Hz的誤差標準差,驗證了本論文提出之演算法的有效性與可靠性。

    This study proposed a Template-Matching Singular Spectrum Analysis (TM-SSA) algorithm to track human heart rate in real-time. Non-contact measurement for physiological signals through radar has been widely discussed for decades. However, significant interference caused by random body movements (RBM) during measurement can hinder the identification of heart rate. Intermittent interference is a common type of RBM in practice. It occurs randomly, lasts for several seconds, and disappears suddenly, reducing the reliability of heart rate tracking during the interference.
    The algorithm proposed uses a three-stage signal processing approach to accurately track human heart rate under the intermittent interference. First, Singular Spectrum Analysis (SSA) is employed to eliminate most of the energy caused by body movements. The singular values of the reconstructed components (RCs) are utilized to tell whether the interference occurs or not. Subsequently, template matching is used to extract the heart rate during interfered, where the clean heartbeat signals in previous segment serves as the template. Finally, Kalman filter is applied to further enhance robustness of the heart rate estimation, leveraging the characteristic that human heart rate won’t drastically deviate.
    The experimental scenario is set with 5 seconds of body movement within a 30-second period, using an 8-second window for sliding data capture, with heart rate updates occurring every second. This approach achieves an error rate of less than 3% and a standard deviation of 0.02 Hz, validating the effectiveness and reliability of the algorithm proposed in this study.

    摘要 I Extended Abstract II 誌謝 VIII 目錄 X 表目錄 XIII 圖目錄 XIV 縮寫總表 XVII 第1章 緒論 1 1.1 研究背景與方向 1 1.2 研究動機 4 1.3 文獻回顧 6 1.4 論文貢獻與架構 10 第2章 FMCW雷達系統與演算法基礎介紹 12 2.1 FMCW雷達基本理論分析 12 2.1.1 拍頻與距離解析度分析 13 2.1.2 FMCW量測單目標之訊號分析 14 2.2 拍頻相位解調方法 15 2.3 非穩態間歇性晃動情境下之相位分析 18 2.4 演算法涉及之方法解析 20 2.4.1 奇異譜分析 20 2.4.1.1 SSA基本理論介紹 20 2.4.1.2 SSA訊號成分分離模擬演示 25 2.4.2 匹配濾波器 30 2.4.3 卡爾曼濾波器 33 第3章 演算法解析與模擬驗證 37 3.1 模板匹配奇異譜分析演算法介紹 37 3.1.1 演算法流程概述 37 3.1.2 演算法前處理 38 3.1.3 階段一:SSA與閾值判定 39 3.1.3.1 生理訊號之SSA處理 39 3.1.3.2 RC的頻率特徵 41 3.1.3.3 奇異值閾值判定與晃動偵測 43 3.1.4 階段二:模板選擇與匹配濾波 45 3.1.5 階段三:卡爾曼濾波用於心率追蹤 47 3.2 模擬受干擾生理訊號訊號之驗證 50 3.2.1 生理訊號模型建立 50 3.2.2 間歇晃動模型建立 52 3.2.3 心率追蹤演算法應用於模擬訊號 53 第4章 人體生理訊號量測實驗與結果解析 60 4.1 24 GHz雷達系統架構與子電路 61 4.2 受測者上半身間歇性晃動實驗 65 4.2.1 受測者間歇晃動環境設置 65 4.2.2 單次約五秒之間歇晃動實驗 66 4.3 心率追蹤之結果與分析 76 4.3.1 量化數值定義 76 4.3.2 實驗結果分析 76 第5章 結論與未來展望 80 5.1 結論 80 5.2 未來展望 81 參考文獻 84

    [1] H. H. Meinel, "Commercial applications of millimeterwaves: history, present status, and future trends," IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 7, pp. 1639-1653, 1995, doi: 10.1109/22.392935.
    [2] A. Kosuge, S. Suehiro, M. Hamada, and T. Kuroda, "mmWave-YOLO: A mmWave Imaging Radar-Based Real-Time Multiclass Object Recognition System for ADAS Applications," IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-10, 2022, doi: 10.1109/TIM.2022.3176014.
    [3] A. Reigber et al., "Very-High-Resolution Airborne Synthetic Aperture Radar Imaging: Signal Processing and Applications," Proceedings of the IEEE, vol. 101, no. 3, pp. 759-783, 2013, doi: 10.1109/JPROC.2012.2220511.
    [4] Z. Zhang et al., "A Review of Satellite Synthetic Aperture Radar Interferometry Applications in Permafrost Regions: Current status, challenges, and trends," IEEE Geoscience and Remote Sensing Magazine, vol. 10, no. 3, pp. 93-114, 2022, doi: 10.1109/MGRS.2022.3170350.
    [5] G. Wang, J. M. Muñoz-Ferreras, C. Gu, C. Li, and R. Gómez-García, "Application of Linear-Frequency-Modulated Continuous-Wave (LFMCW) Radars for Tracking of Vital Signs," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 6, pp. 1387-1399, 2014, doi: 10.1109/TMTT.2014.2320464.
    [6] Y. Khan, A. E. Ostfeld, C. M. Lochner, A. Pierre, and A. C. Arias, "Monitoring of Vital Signs with Flexible and Wearable Medical Devices," (in eng), Adv Mater, vol. 28, no. 22, pp. 4373-95, Jun 2016, doi: 10.1002/adma.201504366.
    [7] Y. Yu, B. Jain, G. Anand, M. Heidarian, A. Lowe, and A. Kalra, "Technologies for non-invasive physiological sensing: Status, challenges, and future horizons," Biosensors and Bioelectronics: X, vol. 16, p. 100420, 2024/02/01/ 2024, doi: https://doi.org/10.1016/j.biosx.2023.100420.
    [8] M. Z. Poh, D. J. McDuff, and R. W. Picard, "Advancements in Noncontact, Multiparameter Physiological Measurements Using a Webcam," IEEE Transactions on Biomedical Engineering, vol. 58, no. 1, pp. 7-11, 2011, doi: 10.1109/TBME.2010.2086456.
    [9] M. Ali, A. Elsayed, A. Mendez, Y. Savaria, and M. Sawan, "Contact and Remote Breathing Rate Monitoring Techniques: A Review," IEEE Sensors Journal, vol. 21, no. 13, pp. 14569-14586, 2021, doi: 10.1109/JSEN.2021.3072607.
    [10] S. D. Uddin, M. S. Hossain, S. M. M. Islam, and V. Lubecke, "Heart Rate Variability-Based Obstructive Sleep Apnea Events Classification Using Microwave Doppler Radar," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, vol. 7, no. 4, pp. 416-424, 2023, doi: 10.1109/JERM.2023.3317304.
    [11] L. Wen et al., "Noncontact Infant Apnea Detection for Hypoxia Prevention With a K-Band Biomedical Radar," IEEE Transactions on Biomedical Engineering, vol. 71, no. 3, pp. 1022-1032, 2024, doi: 10.1109/TBME.2023.3325468.
    [12] M. Shen, K. L. Tsui, M. A. Nussbaum, S. Kim, and F. Lure, "An Indoor Fall Monitoring System: Robust, Multistatic Radar Sensing and Explainable, Feature-Resonated Deep Neural Network," IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 4, pp. 1891-1902, 2023, doi: 10.1109/JBHI.2023.3237077.
    [13] H. Y. Chang, C. H. Hsu, and W. H. Chung, "Fast Acquisition and Accurate Vital Sign Estimation with Deep Learning-Aided Weighted Scheme Using FMCW Radar," in 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), 19-22 June 2022 2022, pp. 1-6, doi: 10.1109/VTC2022-Spring54318.2022.9860799.
    [14] D. Morgan and M. Zierdt, "Novel signal processing techniques for Doppler radar cardiopulmonary sensing," Signal Processing, vol. 89, pp. 45-66, 01/31 2009, doi: 10.1016/j.sigpro.2008.07.008.
    [15] B. Schleicher, I. Nasr, A. Trasser, and H. Schumacher, "IR-UWB Radar Demonstrator for Ultra-Fine Movement Detection and Vital-Sign Monitoring," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp. 2076-2085, 2013, doi: 10.1109/TMTT.2013.2252185.
    [16] J. Wang, T. Karp, J. M. Muñoz-Ferreras, R. Gómez-García, and C. Li, "A Spectrum-Efficient FSK Radar Technology for Range Tracking of Both Moving and Stationary Human Subjects," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 12, pp. 5406-5416, 2019, doi: 10.1109/TMTT.2019.2941189.
    [17] W. C. Su, M. C. Tang, R. E. Arif, T. S. Horng, and F. K. Wang, "Stepped-Frequency Continuous-Wave Radar With Self-Injection-Locking Technology for Monitoring Multiple Human Vital Signs," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 12, pp. 5396-5405, 2019, doi: 10.1109/TMTT.2019.2933199.
    [18] B. K. Park, V. Lubecke, O. Boric-Lubecke, and A. Host-Madsen, "Center Tracking Quadrature Demodulation for a Doppler Radar Motion Detector," in 2007 IEEE/MTT-S International Microwave Symposium, 3-8 June 2007 2007, pp. 1323-1326, doi: 10.1109/MWSYM.2007.380438.
    [19] J. Tu and J. Lin, "Fast Acquisition of Heart Rate in Noncontact Vital Sign Radar Measurement Using Time-Window-Variation Technique," IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 1, pp. 112-122, 2016, doi: 10.1109/tim.2015.2479103.
    [20] W. F. Chang, K. W. Chen, and C. L. Yang, "Noise Tolerable Vital Sign Detection Using Phase Accumulated Demodulation for FMCW Radar System," in 2018 IEEE International Microwave Biomedical Conference (IMBioC), 14-15 June 2018 2018, pp. 61-63, doi: 10.1109/IMBIOC.2018.8428908.
    [21] K. J. Wu and C. L. Yang, "Heart Rate Extraction with VMD Algorithm in Non-Stationary Clutter Environment Based on FMCW Radar Systems," in 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 25-27 Aug. 2021 2021, pp. 1-3, doi: 10.1109/RFIT52905.2021.9565243.
    [22] P. L. Cheng and C. L. Yang, "Heart Rate Detection With Hilbert Vibration Decomposition in Random Body Movements Based on FMCW Radars," IEEE Microwave and Wireless Technology Letters, vol. 33, no. 6, pp. 935-938, 2023, doi: 10.1109/LMWT.2023.3268347.
    [23] C. Li and J. Lin, "Random Body Movement Cancellation in Doppler Radar Vital Sign Detection," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 12, pp. 3143-3152, 2008, doi: 10.1109/TMTT.2008.2007139.
    [24] I. Mostafanezhad, O. Boric-Lubecke, V. Lubecke, and D. P. Mandic, "Application of empirical mode decomposition in removing fidgeting interference in doppler radar life signs monitoring devices," in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 3-6 Sept. 2009 2009, pp. 340-343, doi: 10.1109/IEMBS.2009.5333206.
    [25] Q. Lv et al., "Doppler Vital Signs Detection in the Presence of Large-Scale Random Body Movements," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 9, pp. 4261-4270, 2018, doi: 10.1109/TMTT.2018.2852625.
    [26] Q. Wu, Z. Mei, Z. Lai, D. Li, and D. Zhao, "A Non-Contact Vital Signs Detection in a Multi-Channel 77GHz LFMCW Radar System," IEEE Access, vol. 9, pp. 49614-49628, 2021, doi: 10.1109/ACCESS.2021.3068480.
    [27] Z. Chen, Y. Liu, C. Sui, M. Zhou, and Y. Song, "A Novel Scheme for Suppression of Human Motion Effects in Non-Contact Heart Rate Detection," IEEE Access, vol. 11, pp. 84241-84257, 2023, doi: 10.1109/ACCESS.2023.3302918.
    [28] J.-M. Muñoz-Ferreras, G. Wang, C. Li, and R. Gómez-García, "Mitigation of stationary clutter in vital-sign-monitoring linear-frequency-modulated continuous-wave radars," IET Radar, Sonar & Navigation, vol. 9, no. 2, pp. 138-144, 2015/02/01 2015, doi: https://doi.org/10.1049/iet-rsn.2014.0106.
    [29] M. Le, D.-K. Le, and J. Lee, "Multivariate singular spectral analysis for heartbeat extraction in remote sensing of uwb impulse radar," Sensors and Actuators A: Physical, vol. 306, p. 111968, 2020.
    [30] M. Saeed, C. C. Took, and S. R. Alty, "Efficient algorithm to implement sliding singular spectrum analysis with application to biomedical signal Denoising," in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020: IEEE, pp. 1026-1029.
    [31] I. Mezić, "Spectral properties of dynamical systems, model reduction and decompositions," Nonlinear Dynamics, Article vol. 41, no. 1-3, pp. 309-325, 2005, doi: 10.1007/s11071-005-2824-x.
    [32] I. Y et al., "Contactless Heartbeat Detection from CW-Doppler Radar using Windowed-Singular Spectrum Analysis," in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 20-24 July 2020 2020, pp. 477-480, doi: 10.1109/EMBC44109.2020.9175441.
    [33] T. Alexandrov, S. Bianconcini, E. B. Dagum, P. Maass, and T. S. McElroy, "A Review of Some Modern Approaches to the Problem of Trend Extraction," Econometric Reviews, Review vol. 31, no. 6, pp. 593-624, 2012, doi: 10.1080/07474938.2011.608032.
    [34] H. Hassani, R. Mahmoudvand, and M. Zokaei, "Separability and window length in singular spectrum analysis," Comptes Rendus. Mathématique, vol. 349, no. 17-18, pp. 987-990, 2011, doi: 10.1016/j.crma.2011.07.012.
    [35] J. P. Huke, "Embedding Nonlinear Dynamical Systems: A Guide to Takens' Theorem," 2006.
    [36] N. Golyandina and A. Shlemov, "Variations of singular spectrum analysis for separability improvement: non-orthogonal decompositions of time series," arXiv preprint arXiv:1308.4022, 2013.
    [37] M. Zhou, Y. Liu, S. Wu, C. Wang, Z. Chen, and H. Li, "A novel scheme of high-precision heart rate detection with a mm-wave FMCW radar," IEEE Access, 2023.
    [38] J. Tu and J. Lin, "Fast acquisition of heart rate in noncontact vital sign radar measurement using time-window-variation technique," IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 1, pp. 112-122, 2015.
    [39] L. Liu, J. Zhang, Y. Qu, S. Zhang, and W. Xiao, "mmRH: Noncontact Vital Sign Detection With an FMCW mm-Wave Radar," IEEE Sensors Journal, vol. 23, no. 8, pp. 8856-8866, 2023, doi: 10.1109/JSEN.2023.3250500.
    [40] A. Singh, S. U. Rehman, S. Yongchareon, and P. H. J. Chong, "Multi-Resident Non-Contact Vital Sign Monitoring Using Radar: A Review," IEEE Sensors Journal, vol. 21, no. 4, pp. 4061-4084, 2021, doi: 10.1109/JSEN.2020.3036039.
    [41] Z.-K. Yang, H. Shi, S. Zhao, and X.-D. Huang, "Vital sign detection during large-scale and fast body movements based on an adaptive noise cancellation algorithm using a single Doppler radar sensor," Sensors, vol. 20, no. 15, p. 4183, 2020.
    [42] A-INFO. "tr_LB-34-20." https://www.ainfoinc.com/amfilerating/file/download/file_id/1149/ (accessed.
    [43] L. Liu, S. Zhang, and W. Xiao, "Non-Contact Vital Signs Detection Using mm-Wave Radar During Random Body Movements," in 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), 1-4 Aug. 2021 2021, pp. 1244-1249, doi: 10.1109/ICIEA51954.2021.9516249.
    [44] W. Yin, X. Yang, L. Li, L. Zhang, N. Kitsuwan, and E. Oki, "HEAR: Approach for heartbeat monitoring with body movement compensation by IR-UWB radar," Sensors, vol. 18, no. 9, p. 3077, 2018.
    [45] M. Brand, "Fast low-rank modifications of the thin singular value decomposition," Linear Algebra and its Applications, vol. 415, no. 1, pp. 20-30, 2006, doi: 10.1016/j.laa.2005.07.021.
    [46] J. Weng, Y. Zhang, and W.-S. Hwang, "Candid covariance-free incremental principal component analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 1034-1040, 2003.

    無法下載圖示 校內:2026-07-29公開
    校外:2026-07-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE