| 研究生: |
謝俊億 Hsieh, Chun-Yi |
|---|---|
| 論文名稱: |
主動脈側接血泵之流場分析 Flow Study of Para-Aortic Blood Pump |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 視流 、粒子影像測速法 、反脈動裝置 、左心室輔助器 |
| 外文關鍵詞: | flow visualization, particle image velocimetry, counterpulsation device, ventricular assist device |
| 相關次數: | 點閱:112 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
主動脈側接血泵( Para-Aortic Blood Pump,簡稱PABP )為一新穎的左心室輔助器,為了驗證此血泵是否能使血栓和溶血的危機降到最低,本研究共以四種不同的方法進行分析。首先,以粒子標記法觀察其流場軌跡;接著以染料稀釋法驗證PABP血腔中是否會有舊血液殘留;然後以顏料沖刷法研究壁面的沖刷效應;最後應用粒子影像測速法( PIV )使其流場量化。
粒子標記法結果顯示,PABP整體之流場型態大致為單一逆時針渦流;染料稀釋法證明了血腔中之流體經過大約7個週期會完成汰換,此現象可減少血液病變的發生;顏料沖刷法驗證了PABP近壁流場並未發現任何迴流死水區,壁表面皆能被流場均勻地沖刷。
PIV流場量測結果顯示,PABP中心對稱面之流場型態為一逆時針渦流,並且最高的瞬時速度可達100 cm/sec以上。比較其流場、渦度場以及剪應變率場之後,可歸納出:不論心搏率和輔助頻率為何,在PIV所能量測到的特定空間和特定時間範圍中,最快速度以及最大剪應變率皆在剛舒張完成之瞬間;將此時的資料做更進一步之分析,可得到瞬間最大剪應力為0.4 N/m2,此剪應力遠小於紅血球變形剪應力值 50 N/m2以及血小板激化值10 N/m2。綜合以上四種實驗的結果,驗證了PABP之流場產生溶血或血栓之風險是非常低的。
Para-Aortic Blood Pump ( PABP ) is a novel left ventricular assist device. To ensure minimal thrombosis and hemolysis, four methods were used in this study. First, tracer particle visualization was used to reveal basic flow patterns. Second, dye dilution method results can identify if any residual non-replaceable fluid still remained inside the PABP. Third, dye washout method evaluated the surface washing effect. Last, particle image velocimetry (PIV) was applied to quantify the flow fields.
The results of tracer particle visualization showed a counterclockwise vortex pattern inside the blood chamber of PABP. The results of dye dilution method proved good replacement that can prevent blood disease. The results of dye washout method indicated uniform washing on the wall.
The results of PIV also showed a counterclockwise vortex pattern in PABP during diastole, and the maximum velocity was measured near 100 cm/sec. After analyzing the velocity, vorticity, and shear rate fields, one can conclude that both maximum velocity and shear rate happened right in the start of diastole. By calculating strain field of the flow, the maximum instaneous shear stress was found to be 0.4 N/m2, which was far less than the value of erythrocyte deformability: 50 N/m2 and the value of platelet activation: 10 N/m2. Therefore, the current PABP design is proven to be a low risk of thrombosis and hemolysis during diastole.
1. Rose, E.A., et al., Long-term use of a left ventricular assist device for end-stage heart failure. New England Journal of Medicine, 2001. 345(20): p. 1435-1443.
2. Burkhoff, D., S. Klotz, and D.M. Mancini, LVAD-Induced reverse remodeling: Basic and clinical implications for myocardial recovery. Journal of Cardiac Failure, 2006. 12(3): p. 227-239.
3. Goldstein, D.J., M.C. Oz, and E.A. Rose, Medical progress - Implantable left ventricular assist devices. New England Journal of Medicine, 1998. 339(21): p. 1522-1533.
4. Stevenson, L.W. and R.L. Kormos, Mechanical Cardiac Support 2000: Current Applications and Future Trial Design - June 15-16, 2000 - Bethesda, Maryland. Journal of the American College of Cardiology, 2001. 37(1): p. 340-370.
5. Ji, B.Y. and A. Undar, An evaluation of the benefits of pulsatile versus nonpulsatile perfusion during cardiopulmonary bypass procedures in pediatric and adult cardiac patients. Asaio Journal, 2006. 52(4): p. 357-361.
6. Undar, A., Myths and truths of Pulsatile and nonpulsatile perfusion during acute and chronic cardiac support. Artificial Organs, 2004. 28(5): p. 439-443.
7. Bolooki, H. Clinical Application of the Intra-Aortic Balloon Pump. 1998; 3rd:[
8. Trost, J.C. and L.D. Hillis, Intra-aortic balloon counterpulsation. Am J Cardiol, 2006. 97(9): p. 1391-8.
9. Papaioannou, T.G. and C. Stefanadis, Basic principles of the intraaortic balloon pump and mechanisms affecting its performance. Asaio Journal, 2005. 51(3): p. 296-300.
10. Saavedra, W.F., et al., Reverse remodeling and enhanced adrenergic reserve from passive external support in experimental dilated heart failure. Journal of the American College of Cardiology, 2002. 39(12): p. 2069-2076.
11. Nanas, S.N., et al., High stroke volume para-aortic counterpulsation device versus centrifugal pump in cardiogenic shock: Experimental study. World Journal of Surgery, 1997. 21(3): p. 318-322.
12. Stamatelopoulos, S.F., et al., Treating severe cardiogenic shock by large counterpulsation volumes. Annals of Thoracic Surgery, 1996. 62(4): p. 1110-1117.
13. Terrovitis, J.V., et al., Superior performance of a paraaortic counterpulsation device compared to the intraaortic balloon pump. World Journal of Surgery, 2003. 27(12): p. 1311-6.
14. Liu, Y., et al., Design and initial testing of a mock human circulatory loop for left ventricular assist device performance testing. Artificial Organs, 2005. 29(4): p. 341-345.
15. Mitamura, Y., et al., Prediction of hemolysis in rotary blood pumps with computational fluid dynamics analysis. J Congest Heart Fail Circulatory Support 2001. 1(4): p. 331-336.
16. Arvand, A., M. Hormes, and H. Reul, A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump. Artificial Organs, 2005. 29(7): p. 531-540.
17. Sutera, S.P. and M.H. Mehrjardi, Deformation and Fragmentation of Human Red Blood-Cells in Turbulent Shear-Flow. Biophysical Journal, 1975. 15(1): p. 1-10.
18. Grigioni, M., et al., The power-law mathematical model for blood damage prediction: Analytical developments and physical inconsistencies. Artificial Organs, 2004. 28(5): p. 467-475.
19. Williams, A.R., Release of Serotonin from Human Platelets by Acoustic Microstreaming. Journal of the Acoustical Society of America, 1974. 56(5): p. 1640-1643.
20. Raffel, M., Particle image velocimetry : a practical guide. 2nd ed2007, Heidelberg ; New York: Springer. xx, 448 p.
21. Milnor, W.R., Hemodynamics. 2nd ed1989, Baltimore: Williams & Wilkins. xii, 419 p.
22. Liu, J.S., P.C. Lu, and S.H. Chu, Turbulence characteristics downstream of bileaflet aortic valve prostheses. Journal of Biomechanical Engineering-Transactions of the Asme, 2000. 122(2): p. 118-124.
23. 曾啟銓, “主動脈側接人工血管流場之數值探討,”成功大學航空太空工程研究所論文, 2008.