簡易檢索 / 詳目顯示

研究生: 施彥宇
Shih, Yen-Yu
論文名稱: 鉭鈮酸鉀(KTa1-xNbxO3)摻雜鉺之發光特性研究
The luminescence properties of erbium doped KTa1-xNbxO3 polycrystalline
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 97
中文關鍵詞: 鉭鈮酸鉀
外文關鍵詞: KTa1-xNbxO3, Erbium
相關次數: 點閱:35下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   KTa1-xNbxO3可藉由調節組成成分x的比例而改變居禮溫度Tc (13-708K),因此在室溫下KTa1-xNbxO3可以具有順電相立方晶系(x<0.4) 、鐵電相正方晶系(0.4≦x≦0.57)及斜方晶系(x>0.57)三種不同的結構,且其具有高介電常數、自發性極化、熱釋電效應、二次電光係數、及非線性光學係數的特性,為一非常有應用價值的鐵電材料。本論文主要探討以固態反應法製備摻雜Er3+之KTa1-xNbxO3(x=0.0-0.9),分別改變其主體結構、摻雜濃度及燒結溫度,以提升Er3+發光效率,並藉由XRD、SEM、PL、RAMAN作特性之量測。在研究中發現,隨燒結溫度的提高,Er3+可以取代K+的位置而完全固溶於主體當中,當Er3+摻雜的濃度2 mol%時,為其最佳比例;且隨著Ta的比例逐漸提高,發光效率進而獲得大幅改善。

     KTN crystal is an attractive material which exhibits high dielectric constants, spontaneous polarization, pyroelectric, quadratic electrooptic effect and nonlinear optical. The Curie point (Tc) of KTN can be adjusted by the variation of Nb content. Therefore, KTN has three kinds of crystal structures which are cubic (x<0.4), tetragonal (0.4≦x≦0.57) and orthorhombic (x>0.57) at room temperature. In this paper, we investigates the luminescence properties of erbium doped Potassium tantalate niobate ceramics, which are prepared by the solid state synthesized method. In this work, we tried to raise the efficiency of luminescence by adjusting host content, concentration of erbium and sintering temperature. The experiments showed that the Er3+ ion can be dispersed in host completely by substitution for K+ ion site. In concentration study, as KTN doped with 2 mol% Er2O3 has the strongest fluorescence intensity due to Er3+ 4f energy level transitions. We also find that the fluorescence intensity increasing gradually because Ta5+ ion substitutes Nb5+ ion. The material characteristics were also analyzed by using XRD, SEM and Raman spectrometer.

    第一章 緒論.................................................1 1.1 前言....................................................1 1.2 文獻回顧................................................2 1.3 研究動機................................................3 1.4 論文架構................................................3 第二章 理論基礎.............................................4 2.1 主體材料介紹............................................4 2.2 發光機制簡介............................................5 2.2.1 熱輻射................................................5 2.2.2 輻射放射..............................................6 2.2.3 激發種類及應用........................................6 2.3 發光原理與過程..........................................8 2.3.1 螢光體能量的激發與吸收................................8 2.3.2 螢光放射和非輻射轉移..................................9 2.3.3 螢光材料之光學躍遷...................................11 2.4 發光中心之種類與原理...................................12 2.5 稀土族發光摻雜.........................................14 2.6 螢光體性質與量測.......................................16 2.6.1 主體晶格對光譜之影響.................................16 2.6.2 螢光效率.............................................17 2.6.3 發光亮度與濃度效應...................................18 2.6.4 濃度淬滅.............................................19 2.6.5 毒劑現象(poisoning)................................20 2.6.6 熱消淬現象(thermal quenching)......................20 2.6.7 亮度量測.............................................20 2.6.8 放射光譜的量測.......................................21 2.6.9 衰減期(Decay Time)的量測...........................21 2.6.10 色度座標(CIE chromaticity diagram)................23 第三章 實驗參數與量測......................................25 3.1實驗藥品................................................25 3.2 實驗步驟...............................................25 3.3 儀器設備及特性分析.....................................27 3.3.1 儀器設備.............................................27 3.3.2 特性分析.............................................27 3.3.2.1 結構分析...........................................27 3.3.2.2 光學性質分析.......................................29 第四章 結果與討論..........................................32 4.1 主體改變對Er3+發光影響.................................32 4.1.1 XRD分析..............................................32 4.1.2 514.5 nm excitation PL光譜分析.......................32 4.1.3 PLE 光譜分析.........................................33 4.1.4 Xe燈PL光譜分析.......................................34 4.1.5 Raman 光譜分析.......................................34 4.1.6 SEM分析..............................................35 4.1.7 CIE..................................................35 4.2 Er3+摻雜濃度改變的影響.................................36 4.2.1 XRD分析..............................................36 4.2.2 SEM 分析.............................................37 4.2.3 PL光譜分析...........................................37 4.3 燒結溫度的改變.........................................39 4.3.1 XRD..................................................39 4.3.2 SEM..................................................39 4.3.3 PL光譜...............................................40 第五章 結論與未來展望......................................42 5.1 結論...................................................42 5.2 未來展望及改善.........................................43 參考文獻...................................................44 表目錄 表1-1 KTN的相關研究........................................47 表2-1 稀土元素的氧化態.....................................47 表4-1 KTa1-xNbxO3 : 1 mol% Er3+ PL peak位置................48 表4-2 PLE peak position....................................49 圖目錄 圖2-1 KNbO3-KTaO3相圖......................................50 圖2-2 相變溫度與x的關係....................................50 圖2-3 電磁光譜圖...........................................51 圖2-4 Jablonski diagram....................................51 圖2-5 能量吸收轉換圖.......................................52 圖2-6 電子能量釋放示意圖...................................52 圖2-7 解釋螢光體能量吸收與放射之組態座標圖.................53 圖2-8 螢光體之Stokes shift 示意圖..........................53 圖2-9 不同偶合作用對發射峰寬度變化之影響...................54 圖2-10 非輻射能量轉移之三種原子能量座標圖..................54 圖2-11 固態發光材料中可能之躍遷現象........................55 圖2-12 Energy levels of trivalent lanthanide ions..........56 圖2-13 The effect of poison centers on phosphor efficiency.57 圖2-14 The effect of temperature on phosphor efficiency....57 圖2-15 C.I.E 色度座標圖....................................58 圖3-1 固態反應合成法實驗流程圖.............................59 圖3-2 去PVA的溫度曲線......................................60 圖3-3 燒結的溫度曲線.......................................60 圖3-4 測量螢光體激發光譜之實驗裝置圖.......................61 圖3-5 測量螢光體發射光譜之實驗裝置圖.......................62 圖4-1 KTa1-xNbxO3 : 2 mol% Er3+ 之XRD圖....................64 圖4-3 KTa1-xNbxO3 : 1 mol% Er3+ 於520-570nm PL比較圖.......65 圖4-4 KTa1-xNbxO3 : 1 mol% Er3+ 於640-680nm PL比較圖.......66 圖4-5 KTa1-xNbxO3 : 1 mol% Er3+ 於830-870nm PL比較圖.......67 圖4-6 KTa1-xNbxO3 : 2 mol% Er3+ PLE比較圖..................68 圖4-7 KTa1-xNbxO3 : 1 mol% Er3+ (x=0.0~0.9)PLE Intensity比較圖...69 圖4-8 KTa1-xNbxO3 : 2 mol% Er3+ 於520-570nm PL比較圖.......70 圖4-9 KTa1-xNbxO3 : 2 mol% Er3+ 於640-680 nm PL比較圖......71 圖4-10 KTa1-xNbxO3 : 2 mol% Er3+ 於830-870nm PL比較圖......72 圖4-11 KTa1-xNbxO3 : 1 mol% Er3+ Raman比較圖...............73 圖4-12 KTa1-xNbxO3 : Er3+ 之CIE座標圖......................74 圖4-13 KTa1-xNbxO3 : 1 mol% Er3+ SEM比較圖.................75 圖4-14 KTa0.2Nb0.8O3 改變不同摻雜Er3+濃度的XRD圖...........76 圖4-15 KTa0.5Nb0.5O3 改變不同摻雜Er3+濃度的XRD圖...........77 圖4-16 KTaO3 改變不同摻雜Er3+濃度的XRD圖...................78 圖4-17 KTa0.2Nb0.8O3 : y mol% Er3+ SEM比較圖...............79 圖4-18 KTa0.5Nb0.5O3 : y mol% Er3+ SEM比較圖...............80 圖4-19 KTaO3 : y mol% Er3+ SEM比較圖.......................81 圖4-20 KTa0.2Nb0.8O3 : y mol% Er3+ (y=0.5-3) 1100℃ PL比較圖...82 圖4-21 KTa0.5Nb0.5O3 : y mol% Er3+ (y=0.5-3) 1160℃ PL比較圖...83 圖4-22 KTaO3 : y mol% Er3+ (y=0.5-3) 1360℃ PL比較圖.......84 圖4-23 KTa0.2Nb0.8O3 : 2 mol% Er3+改變不同燒結溫度的XRD圖..85 圖4-24 KTa0.5Nb0.5O3 : 2 mol% Er3+改變不同燒結溫度的XRD圖..86 圖4-25 KTaO3 : 2 mol% Er3+改變不同燒結溫度的XRD圖..........87 圖4-26 KTa0.2Nb0.8O3 : 2 mol% Er3+ 在不同燒結溫度下SEM比較圖...88 圖4-27 KTa0.5Nb0.5O3 : 2 mol% Er3+ 在不同燒結溫度下SEM比較圖...89 圖4-28 KTaO3 : 2 mol% Er3+ 在不同燒結溫度下SEM比較圖.......90 圖4-29 KTa0.2Nb0.8O3 : 2 mol% Er3+ 在不同燒結溫度下PL比較圖91 圖4-30 KTa0.5Nb0.5O3 : 2 mol% Er3+ 在不同燒結溫度下PL比較圖92 圖4-31 KTaO3 : 2 mol% Er3+ 在不同燒結溫度下PL比較圖........93 圖4-32 KTa0.2Nb0.8O3 : 3 mol% Er3+ 在不同退火溫度下PL比較圖94 圖4-33 KTa0.5Nb0.5O3 : 3 mol% Er3+ 在不同燒結溫度下PL比較圖95 圖4-34 KTaO3 : 3 mol% Er3+ 在不同燒結溫度下PL比較圖........96 圖4-35 Er3+能階躍遷示意圖..................................97

    [1]Shibin, L. Tao, H. Bor-Chyuan, S. Fred, S. Karine, L. Jacques, Pl Nasser, “J. Non-Crys. Solids” 263, 364 (2000)
    [2]M. Okayasu, T. Takeshita, M. Yamada, O. Kogure, M. Horiguchi, M. Fjkuda, K. Oe, S. Uehara, “Elec. Lett.” 25[9], 1563 (1989)
    [3]D. J. Cherng, C. Sien, “Optics Communications” 162, 219 (1999)
    [4]Z. J. Chen, J. D. Minelly, Y. Gu, “Electron. Lett.” 32, 1812 (1996)
    [5]J. Nilsson, P. Scheer, B. Jaskorzynska, “IEEE Photon. Technol. Lett.” 6[3], 383 (1994)
    [6]N. Park, P. Wysochi, R. Pedrazzani, S. Grubb, D. D. K. Walker, “IEEE Photon. Technol. Lett.” 8[9], 1148 (1996)
    [7]A. J. Tae, J. M. Yong, K. K. Hon, “Optics Communications”197,121(2001)
    [8]Z. Mierczyk, M. Kwasny, K. Kopczynski, A. Gietka, T. Lukasiewicz, Z. Frukacz, J. Kisielewski, R. Stepien, K. Jedrzejewski, “Journal of Alloys and Compounds” 301, 398 (2000)
    [9]M. Karasek, “IEEE J. Quantum Electr.” 33[10], 207 (1997)
    [10]A. F. Obaton, C. Parent, G. Le Flem, P.Thony, A. Brenier, G. Boulon, “Journal of Alloys and Compounds” 300, 123 (2000)
    [11]A. Levoshkin, A. Petrov, J. E. Montagne, “Optics Communications” 185, 399 (2000)
    [12]E. Georgiou, O. Musset, J. P. Boquillon, B. Denker, S. E. Sverchkov, “Optics Communcations” 198, 147 (2001)
    [13]P. Laporta, S. De Silvestri, V. Magni, O. Sveito, “Optical Letters” 16[24], 1952 (1991)
    [14]S. J. Hamlin, J. D. Myers, M. J. Myers, “SPIE Eyesafe laser: Components, Systems, and Application” 1419, 100 (1991)
    [15]H. Yamamoto, S. Okamoto, H. Kobayashi, “J. Lumin.” 100, 235 (2002)
    [16]S. Makishima, H. Yamanoto, T. Tomotsu, S. Shionoya, “J. Phys. Soc. Japan” 20, 2147 (1965)
    [17]N. Wada, M. Kubo, N. Maeda, M. Akira, K. Kojima, “J. Mater. Res.” 19, 2, 667 (2004)
    [18]F. C. D. Lemos, D. M. A. Melo, J. E. C. da Silva, “Opti. Comm.” 231, 251 (2004)
    [19]D. L. Zhang, Y. F. Wang, E. Y. B. Pun, Y. Z. Yu, C. H. Chen, J. Q. Yao, “Opti. Mater.” 25, 379 (2004)
    [20]H. Sun. “Journal of Alloys and compounds” 391, 198 (2005)
    [21]C. H. Wen, S. Y. Chu, S. L. Tyan, Y. D. Juang, “J. Crys. Growth” 262, 225 (2004)
    [22]Triebwasser. S ”Phys. Rev” 114, 63 (1956)
    [23]O. M. Stafsudd, M. Y. Pines, “J. Opt. Soc. Am.” 62, 1553 (1972)
    [24]F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, “J. Appl. Phys.” 37(1), 338 (1966)
    [25]A. J. Fox, “Applied Optics” 14(2), 343 (1975)
    [26]D. Von der Linde, A. M. Glass, K. F. Rodgers, “Appl. Phys. Lett.” 26(1), 22 (1975)
    [27]陳皇鈞譯, “材料科學與工程” 曉園出版社, p.735 (1989)
    [28]方志烈著, “半導体發光材料和器件” 復旦大學出版社, p.4-6.
    [29]中村哲郎, “固体發光素子とその應用” (1971)
    [30]青木昌治, “發光ダイオド.” (1977)
    [31]S. Shionoya, W. M. Yen, “Phosphor handbook”, CRC Press LLC, New York, USA (1998)
    [32]蘇勉增,吳世康, “發光材料” 第四卷, 1~39頁
    [33]G. Blasse, B.C. Grabmaier, “Luminescent Materials” Springer Verlag, Berlin
    [34]R. C. Ropp, “Luminescence and the solid state” Elsevier Science Publishers, B. V, The Netherlands(1991)
    [35]劉如熹,紀喨勝, “紫外光發光二極體用螢光粉介紹”
    [36]林麗玉, “奈米硫化鋅與硫化鋅鎘螢光體微粒之製備、特性鑑定與發光特性研究”
    [37]A. Kamimura, S. Sugano, and Y. Tanabe, “Ligand Field Theory and Its Application” First Edition, Shokabo, 269 in Japanese (1969)
    [38]G. Blassr and B. C. Grabmaier, “Luminescence Material”, 19, Springer, Berlin
    [39]D. L. Dexter, “Chem. Phys.” 22(6), 1063 (1954)
    [40]B. Walter, “Ann. Physik” 36, 502, 518 (1889)
    [41]P. D. Johnson and F.E. Williams, “J. Chem. Phys.” 18, 1477 (1950)
    [42]A. DeLuca, “J.Chem. Educ.” 57, 8, 541 (1980)
    [43]P.W. Atkins, “Physical chemistry” 6th edition (1988)
    [44]G. Blasse, B.C. Grabmaier, “Luminescent materials”, Springer Verlag, Berlin Heidelberg, Germany (1994)
    [45]C. H. Lu, S. Y. Lo, H. C. Lin, “Mater. Lett.” 34, 1375 (1986)
    [46]S. I. Shablaev, A. M. Danishebskii, V. K. Subashiev, “Sov. Phys. JETP” 59, 1256 (1984)
    [47]E. Wiesendanger, “Ferroelectrics” 1, 141 (1970)
    [48]R. Loudon, “Phys. Rev.” 137, A1784 (1965)
    [49]E. Burstein, Phonons and Phonon Interactions, Thor A. Bak, Ed.(W. A. Benjamin, Inc. New York, 1964) 276
    [50]C. H. Peery, H. J. H. Fertel, T. F. Mcnell, “J. Chem. Phys.” 47, 5, 1619 (1967)
    [51]A. Vecht, D. W. Smith, S. S. Chadha, C. S. Gibbons, J. Koh, D. Morton, “J. Vac. Sci. Technol.” B12, 781 (1994)
    [52]H. Toki, Y. Sato, K. Tamura, F. Kataoka, S. Itoh, “Proc. Third Int. Display Workshops” 2, 919 (1996)
    [53]S. Riehemann, D. Sabbert, S. Loheide, F. Matthes, G. von Bally, E. Kraetzig, “Optical Materials” 4, 2, 437 (1995)
    [54]R. Hofmeister, A. Yariv, A. Agranat, “J. Crys. Growth”131,486(1993)
    [55]L. A. Knauss, B. E. Vuqmeister, J. Toulouse, “Ferroelectrics” 157, 1-4, 251 (1994)
    [56]H. J. Bae, J. Sigman, D. P. Norton, L. Boatner, “Materials Science and Engineering B: Solid-State Materials for Advanced Technology” 177, 1, 87 (2005)
    [57]R. Gutmann, J. Hulliger, E. Reusser, “J. Crys. Growth” 126, 4, 578 (1993)
    [58]H. Pierhofer, Z. Sitar, F. Gitmans, H. Wuest, P. Gunter, “Ferroelectrics” 201, 1-4, 269 (1997)
    [59]Boatner. L. A, Kratzig E, Orlowski. R. “Ferroelectrics” 27, 247 (1980)
    [60]王繼揚,管慶才,魏景謙,劉耀崗,王民, “人工晶體學報” 21, 105 (1992)
    [61]R. Jagannathan, S.P. Manoharan, R. P. Rao, R. L. Narayanan and N. Rajaram, Bull.

    下載圖示 校內:2008-07-07公開
    校外:2010-07-07公開
    QR CODE