| 研究生: |
陳永祥 Chen, Yung-Hsiang |
|---|---|
| 論文名稱: |
非完整約束輪型機器人之非線性 H2 與 Hinf
控制法設計之研究 Study of Nonlinear H2 and Hinf Control Designs for Nonholonomic Wheeled Mobile Robots |
| 指導教授: |
李祖聖
Li, Tzuu-Hseng S. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 非完整約束輪型機器人 、非線性 H2 與 Hinf 、H2 與 Hinf 效能指標 |
| 外文關鍵詞: | nonholonomic wheeled mobile robots, nonlinear H2 and Hinf, H2 and Hinf performance index |
| 相關次數: | 點閱:110 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係以非線性 H2 與 Hinf 的控制法設計概念來探討非完整約束輪型機器人的軌跡追蹤議題,故這兩個非線性的控制器,必須分別滿足H2 與 Hinf所設定的效能指標。本論文最主要的貢獻為藉由推導獲得一個簡單且容易實現的控制法設計方式來實現非完整約束輪型機器人的軌跡追蹤。基於上述,本論文嘗試藉由分析非完整約束輪型機器人的軌跡追蹤動態誤差方程式,直接進行上述兩個問題的求解,並將H2 與 Hinf 軌跡追蹤的問題轉換成對非線性隨時間變化的類Riccati方程式的求解。非常幸運地,從求類Riccati方程式的求解過程,我們可以得到一個非常容易被實現之控制器架構。最後,利用本論文所推導出的方法,藉由電腦模擬與實作測試來驗證非完整約束輪型機器人對圓形與直線的軌跡追蹤的效能驗證,從呈現的結果中,很清楚的可以發現上述提出之方法均能有效的控制該輪型機器人達成軌跡追蹤之目的。
Two nonlinear H2 and Hinf trajectory tracking control laws for nonholonomic wheeled mobile robots are presented in this dissertation, and the design objective is to specify nonlinear control laws that satisfy the H2 and Hinf performance indexes,respectively, for the trajectory tracking design of nonholonomic wheeled mobile robots. The main contribution of this dissertation is: two solutions with the simpler control structures for the trajectory tracking design of nonholonomic wheeled mobile robots are elegantly derived and practically implemented. Based on a series mathematical analysis for the property of the trajectory tracking error dynamic system of nonholonomic wheeled mobile robots, these H2 and Hinf trajectory tracking problems can be transferred directly to solve different nonlinear time varying Riccati-like equations. Furthermore, solutions to these nonlinear time-varying Riccati-like equations can be fortunately obtained with two very simple forms for the preceding control designs. Finally, simulations and practical testing conditions on circular and straight reference trajectories are used for performance verifications of these proposed methods.
[1] H. Ashrafiuon, K. R. Muske, L. C. McNinch, and R. A. Soltan, “Sliding mode tracking control of surface vessels,” IEEE Transactions on Industrial Electronics, vol. 55, no. 11, pp. 4004-4012, Nov. 2008.
[2] T. Baser and P. Berhard, -optimal Control and Related Minmax Problems, Birkhauser, Berlin, 1990, pp. 72-93.
[3] V. Boquete, R. Garcia, R. Barea, and M. Mazo, “Neural control of the movements of a wheelchair,” Journal of Intelligent and Robotic Systems, vol. 25, no. 3, pp. 213-226, Jul. 1999.
[4] R. Carelli, J. Santos-Victor, F. Roberti, and S. Tosetti, “Direct visual tracking control of remote cellular robots,” Robotics and Nonholonomic Systems, vol. 54, pp. 805-814, 2006.
[5] C. Y. Chen, T. H. S. Li, and Y. C. Yeh, “EP-based kinematic control and adaptive fuzzy sliding mode dynamic control for wheeled mobile robots,” Information Sciences, vol. 179, no. 1-2, pp. 180-195, 2009.
[6] Y. H. Chen, T. H. S. Li, and Y. Y. Chen, “A novel nonlinear control law with trajectory tracking capability for nonholonomic mobile robots: Closed-form solution design,” Applied Mathematics and Information Sciences, vol. 7, no. 2, pp. 749-754, Mar., 2013.
[7] P. Chen, S. Mitsutake, T. Isoda, and T. Shi, “Omni-directional robot and adaptive control method for off-road running,” IEEE Transactions on Robotics and Automation, vol. 18, no. 2, pp. 251-256, Apr. 2002.
[8] Y. Y. Chen, “Nonlinear H2 lateral control design of missiles,” Asian Journal of Control, vol. 16, no. 1, pp. 1-13, Jan. 2014.
[9] D. Chwa, “Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates,” IEEE Transactions on Control Systems Technology, vol. 12, pp. 637-644, 2004.
[10] M. Defoort and T. Murakami, “Sliding-mode control scheme for an intelligent bicycle,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3357-3368, Sep. 2009.
[11] T. Das, I. N. Kar, and S. Chaudhury, “Simple neuron-based adaptive controller for a nonholonomic mobile robot including actuator dynamics,” Neurocomputing, vol. 69, pp. 2140-2151, 2006.
[12] T. Das and I. N. Kar, “Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots,” IEEE Transactions on Control Systems Technology, vol. 14, pp. 501-510, 2006.
[13] W. E. Dixon, D. M. Dawson, E. Zergeroglu, and A. Behal, “Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 31, no. 3, pp. 341-352, Jun. 2001.
[14] K. D. Do and J. Pan, “Global output-feedback path tracking of unicycle-type mobile
robots,” Robotics Computer-Integrated Manufacturing, vol. 22, pp. 166-179, 2006.
[15] W. Dong, W. Huo, S. K. Tso, and W. L. Xu, “Tracking control of uncertain dynamic nonholonomic system and its application to wheeled mobile robots,” IEEE Transactions on Robotics and Automation, vol. 16, pp. 870-874, 2000.
[16] B. A. Francis, “A course in control theory,” Lecture Notes in Control and Information Science Series, vol. 88, Springer-Verlag, New York, pp. 101-113, 1987.
[17] R. R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics,” Journal of Robotic System, vol. 14, no. 3, pp. 149-163, 1997.
[18] R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile robot using neural networks,” IEEE Transactions on Neural Networks, vol. 9, pp. 589-600, Jul. 1998.
[19] T. Hamel and D. Meizel, “On robustness and precision of mobile robots missions,” Automatic, vol. 37, pp. 437-444, 2001.
[20] M. A. Horacio and G. G. Simon, “Mobile robot path planning and tracking using simulated annealing and fuzzy logic control,” Expert Systems with Applications, vol.15, pp. 421-429, 1998.
[21] H. C. Huang and C. C. Tsai, “Adaptive robust control of an omnidirectional mobile platform for nonholonomic service robots in polar coordinates,” Robotics and Nonholonomic Systems, vol. 57, no. 4, pp. 439-460, Apr. 2008.
[22] J. K. Hwan and T. P. Gwi, “Study on the mobility of service robots,” International Journal of Engineering and Technology Innovation (IJETI),” vol. 2, no. 2, pp. 97-112, 2012.
[23] M. Ji, Z. Zhang, G. Biswas, and N. Sarkar, “Hybrid fault adaptive control of a wheeled mobile robot,” IEEE/ASME Transactions on Mechatronics, vol. 8, pp. 226-233, 2003.
[24] M. Jin, J. Lee, P. H. Chang, and C. Choi, “Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3593-3601, Sep. 2009.
[25] Z. P. Jiang and H. Nijmeijev, “Tracking control of mobile robots: A case study in backstepping,” Automatica, vol.33, no.7, pp. 1393-1399, 1997.
[26] Z. P. Jiang and H. Nijmeijev, “A recursive technique for tracking control of nonholonomic system in chained form,” IEEE Transactions on Automatic Control, vol. 44, no. 2, pp. 265-279, 1999.
[27] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable tracking control method for an nonholonomic mobile robot,” in Proceedings of IEEE International Conference on Robotics and Automation, pp. 384-389, Cincinnati, OH, 1990.
[28] P. P. Kanayama and M. A. Rotea, “Mixed H2/H control: A convex optimization approach,” IEEE Transactions Automation Control, vol. 36, no. 7, pp. 824-837, 1991.
[29] D. H. Kim and T. H. Oh, “Tracking control of a two-wheeled mobile robot using input-output linearization,” Control Engineer Practice, vol.7, pp. 369-373, 1999.
[30] M. S. Kim, J. H. Shin, S. G. Hong, and J. J. Lee, “Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modeling uncertainty and disturbances,” Mechatronics, vol. 13 pp. 507-519, 2003.
[31] T. Kukao, H. Nakagawa, and N. Adachi, “Adaptive tracking control of nonholonomic mobile robot,” IEEE Transactions on Robotics and Automation, vol. 16, pp. 609-615, Oct. 2000.
[32] J. P. Laumond, P. E. Jacobs, M. Taix, and R. M. Murray, “A motion planner for nonholonomic mobile robots,” IEEE Transactions on Robotics and Automation, vol.10, no. 5, pp. 577-593, Oct. 1994.
[33] W. S. Lin, C. L. Huang, and M. K. Chuang, “Hierarchical fuzzy control for nonholonomic navigation of wheeled robots,” IEE Proceeding Control Theory and Applications, vol. 152, pp. 598-606, Sep. 2005.
[34] D. J. Leith and W. E. Leithead, “Gain-scheduled and nonlinear systems: Dynamic analysis by velocity-based linearization families,” International Journal of Control, vol. 70, no. 2, pp. 289-317, May 1998.
[35] A. M. B. Loach and S. Drakunov, “Stabilization and tracking in the nonholonomic integrator via sliding modes,” System & Control Letters, vol. 29, no. 2, pp. 91-99, 1996.
[36] G. N. Marichal, L. Acosta, L. Moreno, J. A. Méndez, J. J. Rodrigo, and M. Sigut, “Obstacle avoidance for a mobile robot: A neuro-fuzzy approach,” Fuzzy Sets Sysem., vol. 124, no. 2, pp. 171-179, Dec. 2001.
[37] R. M. Murray and S. Sastry, “Nonholonomic motion planning: Steering using sinusoids,” IEEE Transactions on Automatic Control, vol. 38, no. 5, pp. 700-716, 1993.
[38] G. Oriolo, A. D. Luca, and M. Vendittelli, “WMR control via dynamic feedback linearization: design, implementation and experimental validation, ”IEEE Transactions on Control Systems Technology, vol. 10, pp. 835-852, 2002.
[39] M. S. Park and D. Chwa, “Swing-up and stabilization control of inverted pendulum systems via coupled sliding-mode control method,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3541-3555, Sep. 2009.
[40] F. Pourboghrat and M. P. Karlsson, “Adaptive control of dynamic mobile robots with nonholonomic constraints,” Computers and Electrical Engineering, vol. 28, pp. 241-253, 2002.
[41] G. G. Rigatos, C. S. Tzafestas, and S. G. Tzafestas, “Mobile robot motion control in partially unknown environments using a sliding-mode fuzzy logic controller,” Robotics Automation System, vol. 33, no. 1, pp. 1-11, Oct. 2000.
[42] S. K. Saha, J. Angeles, and J. Darcovich, “The design of kinematically isotropic rolling robots with omnidirectional wheels,” Mechanism and Machine Theory, vol.30, no. 8, pp. 1127-1137, Nov. 1995.
[43] M. A. Soliman, M. M. S. Kaldas, K. D. C. Barton, and P. C. Brooks, “ Fuzzy skyhook control for active suspension systems applied to a full vehicle model,” International Journal of Engineering and Technology Innovation (IJETI), vol. 2, no. 2, pp. 85-96, 2012.
[44] S. Sun, “Designing approach on trajectory-tracking control of mobile robot, ”Robotics and Computer-Integrated Manufacturing, vol. 21, pp. 81-85, 2005.
[45] H. M. Tai, J. Wang, and K. Ashenayi, “A neural network-based tracking control system,” IEEE Transactions on Industrial Electronics, vol. 39, no. 6, pp. 504-510, Dec. 1992.
[46] C. C. Tsai, H. C. Huang, and S. C. Lin, “Adaptive neural network control of self-balancing two-wheeled scooter,” IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1420-1428, Apr. 2010.
[47] D. Tamoghna, I. N. Kar, and S. Chaudhury, “Simple neuron-based adaptive controller for a nonholonomic mobile robot including actuator dynamics,” ScienceDirect, Neurocomputing, vol. 69, pp. 2140-2151, 2006.
[48] A. V. Topalov, J. H. Kim, and T. P. Proychev, “Fuzzy-net control of non-holonomic mobile robot using evolutionary feedback-error-learning,” Robotics and Nonholonomic Systems, vol. 23, pp. 187-200, 1998.
[49] C. Valdivieso and A. Cipriano, “Fault detection and isolation system design for omnidirectional soccer-playing robots,” IEEE International Symposium on Computer-Aided Control Systems Design, pp. 2641-2646, 2006.
[50] M. Wada and H. H. Asada, “A holonomic omnidirectional vehicle with a reconfigurable footprint mechanism and its application to wheelchairs,” in Proceedings of IEEE International Conference on Robotics and Automation, pp. 774-780, 1998.
[51] R. J. Wai, “Fuzzy sliding-mode control using adaptive tuning technique,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 586-594, Feb. 2007.
[52] R. J. Wai and K. H. Su, “Adaptive enhanced fuzzy sliding-mode control for electrical servo drive,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 569-580, Apr. 2006.
[53] R. J. Wai and L. J. Chang, “Adaptive stabilizing and tracking control for a nonlinear inverted-pendulum system via sliding-mode technique,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 674-692, Apr. 2006.
[54] R. J. Wai, M. A. Kuo, and J. D. Lee, “Cascade direct adaptive fuzzy control design for a nonlinear two-axis inverted-pendulum servomechanism,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 38, no. 2, pp. 439-454, Apr. 2008.
[55] R. J. Wai, C. M. Lin, and C. F. Hsu, “Adaptive fuzzy sliding-mode control for electrical servo drive,” Fuzzy Sets and Systems, vol. 143, no. 2, pp. 295-310, 2004.
[56] R. J. Wai and Z. W. Yang, “Adaptive fuzzy neural network control design via a T–S fuzzy model for a robot manipulator including actuator dynamics,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 38, no. 5, pp. 1326-1346, Oct. 2008.
[57] J. Wang, A. B. Rad, and P. T. Chan, “Indirect adaptive fuzzy sliding-mode control: Part I: Fuzzy switching,” Fuzzy Sets and System, vol. 122, pp. 21-30, 2001.
[58] K. Watanabe, Y. Shiraishi, S. G. Tzafestas, J. Tang, and T. Fukuda, “Feedback control of an omnidirectional autonomous platform for mobile service robots,” Robotics and Autonomous Systems, vol. 22, no. 3-4, pp. 315-330, Jul. 1998.
[59] Z. Weng, G. Chen, L. S. Shieh, and J. Larsson, “Evolutionary programming Kalman filter,” Information Sciences, vol. 129, pp. 197-210, 2000.
[60] R. L. Williams, II, B. E. Carter, P. Gallina, and G. Rosati, “Dynamic model with slip for wheeled omnidirectional robots,” IEEE Transactions on Robotics and Automation, vol. 18, no. 3, pp. 285-293, 2002.
[61] C. C. Wit and O. J. Sordalen, “Exponential stabilization of mobile robots with nonholonomic constraints,” IEEE Transactions on Automatic Control, vol. 13, pp.1791-1797, 1992.
[62] C. C. Wong, Y. H. Lin, S. A. Lee, and C. H. Tsai, “GA-based fuzzy system design in FPGA for an omni-directional mobile robot,” Journal of Intelligent and Robotic Systems, vol. 44, no. 4, pp. 327-347, Dec. 2005.
[63] H. N. Wu and H. X. Li, “Finite-dimensional constrained fuzzy control for a class of nonlinear distributed process systems,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 37, no. 5, pp. 1422-1430, Oct. 2007.
[64] J. Wu, D. Pu and H. Ding, “Adaptive robust motion control of SISO nonlinear systems with implementation on linear motors,” Mechatronics, vol. 17, pp. 263-270, 2007.
[65] J. M. Yang and J. H. Kim, “Sliding mode control for trajectory of nonholonomic wheeled mobile robots,” IEEE Transactions on Robotics and Automaion, vol. 15, no. 3, pp. 578-587, 1999.
[66] S. J. Yoo, J. B. Park, and Y. H. Choi, “Indirect adaptive control of nonlinear dynamic systems using self recurrent wavelet neural networks via adaptive learning rates,” Information Sciences, vol. 177, pp. 3074-3098, 2007.
[67] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338-353, 1965.
[68] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning - I,” Information Sciences, vol. 8, pp. 199-249, 1975.
[69] L. A. Zadeh, “Toward a generalized theory of uncertainty (GTU) - an outline,” Information Sciences, vol. 172, pp. 1-40, 2005.
[70] J. Zhang and Y. Xia, “Design of static output feedback sliding mode control for uncertain linear systems,” Journal of Intelligent and Robotic Systems, vol. 57, no. 6, pp. 2161-2170, Jun. 2010.
[71] Q. Zhang, J. Shippen, and B. Jones, “Robust backstepping and neural network control of a low-quality nonholonomic mobile robot,” International Journal of Machine Tools and Manufacture, vol. 39, no. 7, pp. 1117-1134, Jul. 1999.
[72] K. Zhou, K. Glover, B. Bodenheeimer, and J. Doyle, “Mixed H2 and H performance objectives I: Robust performance analysis,” IEEE Transactions Automation Control, vol. 39, no. 8, pp. 1564-1574, 1994.