| 研究生: |
李俊佑 Lee, Jyun-You |
|---|---|
| 論文名稱: |
柔性減能網對於海岸侵淤變化之實驗研究 Experimental Study on the Shore Erosion and Deposition Evolution by Using Derosion Lattice |
| 指導教授: |
楊瑞源
Yang, Ray-Yeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 自然災害減災及管理國際碩士學位學程 International Master Program on Natural Hazards Mitigation and Management |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 水工模擬試驗 、柔性工法 、柔性減能網 、漂沙動床模型 |
| 外文關鍵詞: | Hydraulic simulation test, Soft coastal protection work, Derosion Lattices, Sedimentation movable-bed model |
| 相關次數: | 點閱:141 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主旨為利用試驗研究規則波通過柔性減能網,模擬在波浪作用下侵蝕型海灘剖面之海岸斷面變遷,及分析其輸沙運移特性。試驗於國立成功大學水工試驗所進行,試驗主要分析在柔性減能網的周圍之漂沙落淤變化。其中波浪條件的改變包括進行不同的週期、波高組合(波浪尖銳度)、水位(相對水深比)等條件,以研析漂沙落淤量及海灘剖面坡度變化之差異。
根據試驗分析結果,波浪尖銳度的影響和前人的文獻分析結果相似,尖銳度增加則整體碎波能量損失增加,對海灘的侵蝕量也增加。有鑒於此,本研究透過資料收集、實驗設計、試驗模型建立的方式,綜整分析入射波浪尖銳度、底層泥沙之間的交互作用機制,以瞭解侵蝕海岸可能的輸沙運移的方向與途徑,並有準確的地形測量結果,提供建立柔性減能網模型最佳化位置的依據。最後並由實驗結果得知有無建置柔性減能網,其出現囚沙高度差異最大約達30%,綜言之,建置柔性減能網於侵蝕型海灘確實可提供侵蝕海岸的相關改善與保護效應。
The primary purposes of this study were to use experiments to investigate regular waves passing through the Derosion Lattices for the topography changes of erosion beach profile, and analyze their sediment transport characteristics. The experiments were conducted in Tainan Hydraulics Laboratory of National Cheng Kung University. The experiments mainly analyze the sedimentation silting changes around the Derosion lattices. We change the wave conditions, including different wave periods, wave heights combination, and water level, etc., to analyze the differences between the amount of sediment deposition and bottom changes of beach profile.
According to the results of the experiments, the impacts of wave steepness were similar to the results of the previous literature analysis. As Wave steepness increases, the energy loss of the overall breaking wave increases, and even the amount of beach erosion increases. This study was conducted a comprehensive experiment to analyze the interaction mechanism between wave steepness and sedimentation by literature review, experimental designing, and experimental model establishing to investigate the possible direction and path of sediment transport for erosion beach profile. The obtained results from experiment show that the maximum difference in the height of trapping sands was about 30% for with/without building Derosion Lattice. To sum up, the Derosion Lattices established on erosion beach type can actually provide the protection and improvement effects on erosion beach from the result of this study.
1. Borsje, B. W., van Wesenbeeck, B. K., Dekker, F., Paalvast, P., Bouma, T. J., van Katwijk, M. M., & de Vries, M. B. (2011). How ecological engineering can serve in coastal protection. Ecological Engineering, 37(2), 113-122.
2. Dally, W. R., Dean, R. G., & Dalrymple, R. A. (1985). Wave height variation across beaches of arbitrary profile. Journal of Geophysical Research: Oceans, 90(C6), 11917-11927.
3. Dean, R. G., & Yoo, C. H. (1992). Beach-nourishment performance predictions. Journal of waterway, port, coastal, and ocean engineering, 118(6), 567-586.
4. David R. Basco. (1998); “The Economic Analysis of "Soft" Versus "Hard" Solutions for Shore Protection: An Example”; 26th ICCE, Copenhagen, Denmark, pp. 1449-1460.
5. Einstein, H. A., & Chien, N. (1956). Similarity of distorted river models with movable beds. Transactions of the American Society of Civil Engineers, 121(1), 440-457.
6. Feagin, R. A., Sherman, D. J., & Grant, W. E. (2005). Coastal erosion, global sea‐level rise, and the loss of sand dune plant habitats. Frontiers in Ecology and the Environment, 3(7), 359-364.
7. Galvin, C. J. (1972). Wave breaking in shallow water. Waves on beaches and resulting sediment transport, 413-456.
8. Goda, Y. (1975). Irregular wave deformation in the surf zone. Coastal Engineering in Japan, 18(1), 13-26.
9. Hong, T. H., Lin, G. Y., Peng, T. H., & Jan, C. D. (2007). Flexible retaining structure for evaluation of debris-flow hazards mitigation. In Proceedings of The 12 th conference on current researches in geotechnical engineering in Taiwan, Chi-Tou Taiwan (in Chinese).
10. Jan, C. D., Peng, T. H., Huang, S. J., & Hsu, H. C. (2015). An experimental field study using a flexible high-strengh net breakwater for shore protection. Journal of Marine Science and Technology, 23(1), 14.
11. Kajima, R., Shimizu, T., Maruyama, K., & Saito, S. (1982). Experiments on beach profile change with a large wave flume. In Coastal Engineering 1982 (pp. 1385-1404).
12. Komar, P. D. (1998). The 1997-98 El Niño and erosion on the Oregon coast. Shore & Beach, 66(3), 33-41.
13. Mocke, G. P., & Smith, G. G. (1993). Wave breaker turbulence as a mechanism for sediment suspension. In Coastal Engineering 1992 (pp. 2279-2292).
14. Nordstrom, K. F. (2014). Living with shore protection structures: a review. Estuarine, coastal and shelf science, 150, 11-23.
15. Ribberink, J. S., van der Zanden, J., O'Donoghue, T., Hurther, D., Cáceres, I., & Thorne, P. D. (2014). SandT-Pro: sediment transport measurements under irregular and breaking waves. Coastal Engineering Proceedings, (34), 1-1.
16. Sato, S., Ijima, T., & Tanaka, N. (1962). A study of critical depth and mode of sand movement using radioactive glass sand. Coastal Engineering Proceedings, (8), 18-18.
17. Sunamura, T., & Horikawa, K. (1975). Two-dimensional beach transformation due to waves. In Coastal Engineering 1974 (pp. 920-938).
18. Sunamura, T. (1984). Quantitative predictions of beach-face slopes. Geological Society of America Bulletin, 95(2), 242-245.
19. Smith, S. E., & Abdel-Kader, A. (1988). Coastal erosion along the Egyptian delta. Journal of Coastal Research, 245-255.
20. Spielmann, K., Astruc, D., & Thual, O. (2004). Analysis of some key parametrizations in a beach profile morphodynamical model. Coastal Engineering, 51(10), 1021-1049.
21. US Army Corps of Engineers. (2004). Low Cost Shore Protection: A Property Owner's Guide. The Minerva Group, Inc.
22. Van der Zanden, J. (2016). Sand transport processes in the surf and swash zones. Enschede, The Netherlands: University of Twente.
23. Van Der Zanden, J., Hurther, D., Cáceres, I., O’donoghue, T., & Ribberink, J. S. (2017). Suspended sediment transport around a large-scale laboratory breaker bar. Coastal engineering, 125, 51-69.
24. Yang, R. Y., Wu, Y. C., Hwung, H. H., Liou, J. Y., & Shugan, I. V. (2010). Current countermeasure of beach erosion control and its application in Taiwan. Ocean & coastal management, 53(9), 552-561.
25. Yang, R. Y., Wu, Y. C., & Hwung, H. H. (2012). Beach erosion management with the application of soft countermeasure in Taiwan. Sustainable Development: Authoritative and Leading-Edge Content for Environmental Management, Intech Open, 349-370.
26. 歐善惠, & 許泰文. (1985). 傾斜海灘上之海岸動床模型相似律. 港灣技術, 1, 33-50.。
27. 歐善惠, 王順寬, 許泰文, & 廖學瑞. (1985). 二維海灘地形變化分析與預測。
28. 李兆芳, & 劉正琪. (1995). 波浪通過透水潛堤之新理論解析。
29. 郭金棟.(2001). ,海岸工法之新技術研發(2/4),經濟部水資源局。
30. 黄煌煇.(2001). ,海灘侵蝕防治新科技研發(2/4)計畫,經濟部水利署國立成功大學水工試驗所。
31. 黃煌煇. (2002). ,海灘侵蝕防治新科技研發(3/4)計畫,經濟部水利署國立成功大學水工試驗所。
32. 蔡立宏. (2007). 系列潛堤應用於海岸保護之研究 (2/4) (Vol. 1009600779). 中華民國政府出版品.
33. 彭大雄, & 詹錢登. (2007). 柔性葉片環圈堆對橋墩抗沖刷效果之實驗研究。
34. 詹錢登. (2009). 防止海岸侵蝕柔性保護工法現地實驗研究(1/3),國科會研究計畫成果精簡報告。
35. 李怡婷, 許泰文, & 李兆芳. (2011). 以海岸水動力及海岸漂沙劃設海岸緩衝區。
36. 王玉珏, 陈新民, 桂建达, & 黄天一. (2011). 柔性工法在海岸防护工程中的应用研究——以江苏海岸带为例. 江苏建筑, (5), 72-74.
37. 刘莹. (2012). 二维波浪水槽的构建及其在斜坡堤上的越浪数值模拟研究 [D] (Doctoral dissertation, 青岛: 中国海洋大学).
38. 吳盈志, 劉景毅, & 黃煌煇. (2013). 七股潟湖沙洲地形變遷之研究. 海洋工程學刊, 13(4), 367-391.
39. 彭大雄. (2014). 使用柔性網狀防波堤保護海岸之現地實驗研究,國立成功大學水利暨海洋工程系所博士論文。
40. 洪維屏. (2020). 三維雷射掃描儀應用於臺中港漂沙試驗地形之量測分析技術. 港灣季刊, (117), 25-38.