| 研究生: |
鄭亦淩 Cheng, Yi-Ling |
|---|---|
| 論文名稱: |
探討新冠病毒棘蛋白受體結合區與登革病毒蛋白間的抗原相似性 Study on the Antigenic Similarity between SARS-CoV-2 S1-RBD and Dengue Virus Proteins |
| 指導教授: |
葉才明
Yeh, Trai-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 新冠病毒 、登革病毒 、快篩試驗 、抗原相似性 、抗體依賴性增強 |
| 外文關鍵詞: | COVID-19, dengue virus, SARS-CoV-2, diagnosis, antibody-dependent enhancement |
| 相關次數: | 點閱:143 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
嚴重急性呼吸道症候群冠狀病毒2型,以下簡稱為新冠病毒,自西元2019年12月造成全球性大流行。多項研究指出新冠病毒感染可能會在登革病毒血清檢測中造成假陽性反應,反之亦然;這代表新冠病毒與登革病毒感染人體後,可能產生具有交叉反應的抗體。目前針對這些交叉反應抗體在新冠病毒或登革病毒感染中是否具有保護力或反而會增加疾病嚴重程度尚不明瞭。在本篇研究中,我們發現登革病患血清中對新冠病毒棘蛋白受體結合區(SARS-CoV-2 S1-RBD)具有交叉反應的抗體顯著高於健康對照組。接著,我們從SARS-CoV-2 S1-RBD重組蛋白免疫的兔血清中純化出抗SARS-CoV-2 S1-RBD免疫球蛋白G (anti-SARS-CoV-2 S1-RBD IgG),結果顯示,anti-SARS-CoV-2 S1-RBD IgG可以與登革病毒膜蛋白與非結構蛋白1產生交叉反應;我們也利用噬菌體表達隨機胜肽庫系統進一步找出anti-SARS-CoV-2 S1-RBD IgG辨認到登革病毒膜蛋白與非結構蛋白1的潛在抗原決定區。在細胞實驗結果中,我們發現anti-SARS-CoV-2 S1-RBD IgG能夠有效抑制登革病毒感染與登革病毒非結構蛋白1所造成的血管內皮細胞滲漏。而在登革感染小鼠模式的結果顯示,給予anti-SARS-CoV-2 S1-RBD IgG能夠有效減緩登革病毒感染所造成的小鼠出血時間延長,並降低血清中登革病毒非結構蛋白1的濃度。最後,我們也在某些新冠病患的個體中發現具有與登革病毒蛋白交叉反應的抗體存在,且新冠病患血清組相較於健康對照組的血清能夠有效抑制登革病毒感染。綜上所述,本研究證實SARS-CoV-2 S1-RBD能透過與登革病毒蛋白的抗原相似性產生對登革病毒具有交叉反應的抗體,並減緩登革病毒感染所造成的致病機轉。
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally since December 2019. Several studies have reported that SARS-CoV-2 infections may produce false-positive reactions in dengue virus (DENV) serology tests and vice versa. However, it remains unclear whether SARS-CoV-2 and DENV cross-reactive antibodies provide cross-protection against each other disease or promote disease severity. In this study, we confirmed that antibodies against the SARS-CoV-2 spike protein and its receptor-binding domain (S1-RBD) were significantly increased in dengue patients compared to normal controls. In addition, anti-SARS-CoV-2 S1-RBD IgG purified from anti-S1-RBD hyperimmune rabbit serum could cross-react with both DENV envelope protein (E) and nonstructural protein 1 (NS1). The potential epitopes of DENV E and NS1 recognized by these antibodies were identified by a phage-displayed random peptide library. In addition, DENV infection and DENV NS1-induced endothelial hyperpermeability in vitro were inhibited in the presence of anti-SARS-CoV-2 S1-RBD IgG. Passive transfer of anti-SARS-CoV-2 S1-RBD IgG into mice also reduced the prolonged bleeding time and decreased the serum NS1 levels in DENV-infected mice. Finally, DENV cross-reactive antibodies were found in some individuals after SARS-CoV-2 infection, and COVID-19 patients’ sera could inhibit DENV infection compared to normal controls in vitro. Thus, our results suggest that the antigenic cross-reactivity between the SARS-CoV-2 RBD and DENV can induce the production of anti-SARS-CoV-2 S1-RBD antibodies that cross-react with DENV, which may hinder dengue pathogenesis.
Alen, M. M., K. Dallmeier, J. Balzarini, J. Neyts and D. Schols (2012). "Crucial role of the N-glycans on the viral E-envelope glycoprotein in DC-SIGN-mediated dengue virus infection." Antiviral Res 96(3): 280-287.
Avirutnan, P., N. Punyadee, S. Noisakran, C. Komoltri, S. Thiemmeca, K. Auethavornanan, A. Jairungsri, R. Kanlaya, N. Tangthawornchaikul and C. Puttikhunt (2006). "Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement." J. Infect. Dis. 193(8): 1078-1088.
Beatty, P. R., H. Puerta-Guardo, S. S. Killingbeck, D. R. Glasner, K. Hopkins and E. Harris (2015). "Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination." Sci. Transl. Med. 7(304): 304ra141-304ra141.
Bokhari, S., F. Mahmood and S. Bokhari (2020). "Case Report: Diagnosis of COVID-19 versus Tropical Diseases in Pakistan." Am J Trop Med Hyg 103(1): 77-78.
Cao, X. (2020). "COVID-19: immunopathology and its implications for therapy." Nat Rev Immunol 20(5): 269-270.
Chen, H. R., Y. C. Chuang, Y. S. Lin, H. S. Liu, C. C. Liu, G. C. Perng and T. M. Yeh (2016). "Dengue Virus Nonstructural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy." PLoS Negl Trop Dis 10(7): e0004828.
Costin, J. M., E. Zaitseva, K. M. Kahle, C. O. Nicholson, D. K. Rowe, A. S. Graham, L. E. Bazzone, G. Hogancamp, M. F. Sierra, R. H. Fong, S.-T. Yang, L. Lin, J. E. Robinson, B. J. Doranz, L. V. Chernomordik, S. F. Michael, J. S. Schieffelin and S. Isern (2013). "Mechanistic Study of Broadly Neutralizing Human Monoclonal Antibodies against Dengue Virus That Target the Fusion Loop." J. Virol. 87(1): 52-66.
Crill, W. D. and J. T. Roehrig (2001). "Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells." J. Virol. 75(16): 7769-7773.
El-Qushayri, A. E., A. M. A. Kamel, A. Reda and S. Ghozy (2022). "Does dengue and COVID-19 co-infection have worse outcomes? A systematic review of current evidence." Rev Med Virol: e2339.
Halstead, S. B. (1989). "Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenetic cascade." Rev Infect Dis 11 Suppl 4: S830-839.
Henchal, E. A. and J. R. Putnak (1990). "The dengue viruses." Clin Microbiol Rev 3(41): 376-396.
Hoffmann, M., H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T. S. Schiergens, G. Herrler, N. H. Wu, A. Nitsche, M. A. Müller, C. Drosten and S. Pöhlmann (2020). "SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor." Cell 181(2): 271-280.e278.
Huang, Y., C. Yang, X. F. Xu, W. Xu and S. W. Liu (2020). "Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19." Acta Pharmacol Sin 41(9): 1141-1149.
Khairunisa, S. Q., I. H. Amarullah, S. Churrotin, A. L. Fitria, M. Amin, M. I. Lusida and S. Soegijanto (2021). "Potential Misdiagnosis between COVID-19 and Dengue Infection Using Rapid Serological Test." Infect Dis Rep 13(2): 540-551.
Krammer, F. (2020). "SARS-CoV-2 vaccines in development." Nature 586(7830): 516-527.
Kuhn, R. J., W. Zhang, M. G. Rossmann, S. V. Pletnev, J. Corver, E. Lenches, C. T. Jones, S. Mukhopadhyay, P. R. Chipman and E. G. Strauss (2002). "Structure of dengue virus: implications for flavivirus organization, maturation, and fusion." Cell 108(5): 717-725.
Lai, Y. C., Y. C. Chuang, C. C. Liu, T. S. Ho, Y. S. Lin, R. Anderson and T. M. Yeh (2017). "Antibodies Against Modified NS1 Wing Domain Peptide Protect Against Dengue Virus Infection." Sci Rep 7(1): 6975.
Lee, W. S., A. K. Wheatley, S. J. Kent and B. J. DeKosky (2020). "Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies." Nat Microbiol 5(10): 1185-1191.
Lei, H. Y., T. M. Yeh, H. S. Liu, Y. S. Lin, S. H. Chen and C. C. Liu (2001). "Immunopathogenesis of dengue virus infection." J Biomed Sci 8(51): 377-388.
Li, L., S. M. Lok, I. M. Yu, Y. Zhang, R. J. Kuhn, J. Chen and M. G. Rossmann (2008). "The flavivirus precursor membrane-envelope protein complex: structure and maturation." Science 319(5871): 1830-1834.
Libraty, D. H., P. R. Young, D. Pickering, T. P. Endy, S. Kalayanarooj, S. Green, D. W. Vaughn, A. Nisalak, F. A. Ennis and A. L. Rothman (2002). "High Circulating Levels of the Dengue Virus Nonstructural Protein NS1 Early in Dengue Illness Correlate with the Development of Dengue Hemorrhagic Fever." J. Infect. Dis. 186(8): 1165-1168.
Lu, J. and P. D. Sun (2020). "High affinity binding of SARS-CoV-2 spike protein enhances ACE2 carboxypeptidase activity." J Biol Chem. 295(52):18579-18588
Luo, Y.-Y., J.-J. Feng, J.-M. Zhou, Z.-Z. Yu, D.-Y. Fang, H.-J. Yan, G.-C. Zeng and L.-F. Jiang (2013). "Identification of a novel infection-enhancing epitope on dengue prM using a dengue cross-reacting monoclonal antibody." BMC Microbiol. 13(1): 194.
Lustig, Y., S. Keler, R. Kolodny, N. Ben-Tal, D. Atias-Varon, E. Shlush, M. Gerlic, A. Munitz, R. Doolman, K. Asraf, L. I. Shlush and A. Vivante (2020). "Potential antigenic cross-reactivity between SARS-CoV-2 and Dengue viruses." Clin Infect Dis. 73(7): 2444-2449.
Martina, B. E., P. Koraka and A. D. Osterhaus (2009). "Dengue virus pathogenesis: an integrated view." Clin Microbiol Rev 22(4): 564-581.
Messina, J. P., O. J. Brady, N. Golding, M. U. G. Kraemer, G. R. W. Wint, S. E. Ray, D. M. Pigott, F. M. Shearer, K. Johnson, L. Earl, L. B. Marczak, S. Shirude, N. Davis Weaver, M. Gilbert, R. Velayudhan, P. Jones, T. Jaenisch, T. W. Scott, R. C. Reiner, Jr. and S. I. Hay (2019). "The current and future global distribution and population at risk of dengue." Nat Microbiol 4(9): 1508-1515.
Modhiran, N., D. Watterson, D. A. Muller, A. K. Panetta, D. P. Sester, L. Liu, D. A. Hume, K. J. Stacey and P. R. Young (2015). "Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity." Sci Transl Med 7(304): 304ra142.
Modis, Y., S. Ogata, D. Clements and S. C. Harrison (2003). "A ligand-binding pocket in the dengue virus envelope glycoprotein." PNAS 100(12): 6986-6991.
Nath, H., A. Mallick, S. Roy, S. Sukla, K. Basu, A. De and S. Biswas (2021). "Archived dengue serum samples produced false-positive results in SARS-CoV-2 lateral flow-based rapid antibody tests." J Med Microbiol 70(6): 001369.
Nath, H., A. Mallick, S. Roy, S. Sukla and S. Biswas (2021). "Computational modelling supports that dengue virus envelope antibodies can bind to SARS-CoV-2 receptor binding sites: Is pre-exposure to dengue virus protective against COVID-19 severity?" Comput Struct Biotechnol J 19: 459-466.
Nicolete, V. C., P. T. Rodrigues, I. C. Johansen, R. M. Corder, J. Tonini, M. A. Cardoso, J. G. de Jesus, I. M. Claro, N. R. Faria, E. C. Sabino, M. C. Castro and M. U. Ferreira (2021). "Interacting Epidemics in Amazonian Brazil: Prior Dengue Infection Associated With Increased Coronavirus Disease 2019 (COVID-19) Risk in a Population-Based Cohort Study." Clin Infect Dis 73(11): 2045-2054.
Nunthavichitra, S., S. Prapaso, V. Luvira, S. Muangnoicharoen, P. Leaungwutiwong and W. Piyaphanee (2020). "Case Report: COVID-19 Presenting as Acute Undifferentiated Febrile Illness-A Tropical World Threat." Am J Trop Med Hyg 103(1): 83-85.
Op De Beeck, A., R. Molenkamp, M. Caron, A. Ben Younes, P. Bredenbeek and J. Dubuisson (2003). "Role of the transmembrane domains of prM and E proteins in the formation of yellow fever virus envelope." J Virol 77(2): 813-820.
Pokidysheva, E., Y. Zhang, A. J. Battisti, C. M. Bator-Kelly, P. R. Chipman, C. Xiao, G. G. Gregorio, W. A. Hendrickson, R. J. Kuhn and M. G. Rossmann (2006). "Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN." Cell 124(3): 485-493.
Prapty, C., R. Rahmat, Y. Araf, S. K. Shounak, A. A. Noor, T. I. Rahaman, M. J. Hosen, C. Zheng and M. G. Hossain (2022). "SARS-CoV-2 and dengue virus co-infection: Epidemiology, pathogenesis, diagnosis, treatment, and management." Rev Med Virol: e2340.
Premkumar, L., B. Segovia-Chumbez, R. Jadi, D. R. Martinez, R. Raut, A. Markmann, C. Cornaby, L. Bartelt, S. Weiss, Y. Park, C. E. Edwards, E. Weimer, E. M. Scherer, N. Rouphael, S. Edupuganti, D. Weiskopf, L. V. Tse, Y. J. Hou, D. Margolis, A. Sette, M. H. Collins, J. Schmitz, R. S. Baric and A. M. de Silva (2020). "The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients." Sci Immunol 5(48).
Rana, M. S., M. Usman, M. M. Alam, A. Ikram, M. Salman and M. Umair (2022). "Impact of previous SARS-CoV-2 infection on the rate of mortality in dengue. A preliminary report from Pakistan." J Infect. 84(5): 722-746.
Ravikumar, N., M. S. Randhawa, K. Nallasamy, S. K. Angurana, M. Kumar, G. K. Mohi, R. K. Ratho and M. Jayashree (2021). "Impact of Recent SARS-CoV-2 Infection on the Course and Severity of Dengue in Children: A Prospective Observational Study from North India." Am J Trop Med Hyg 105(3): 751-755.
Rothman, A. L. (2004). "Dengue: defining protective versus pathologic immunity." J Clin Invest 113(7): 946-951.
Santoso, M. S., S. Masyeni, S. Haryanto, B. Yohan, M. L. Hibberd and R. T. Sasmono (2021). "Assessment of dengue and COVID-19 antibody rapid diagnostic tests cross-reactivity in Indonesia." Virol J 18(1): 54.
Shang, J., G. Ye, K. Shi, Y. Wan, C. Luo, H. Aihara, Q. Geng, A. Auerbach and F. Li (2020). "Structural basis of receptor recognition by SARS-CoV-2." Nature 581(7807): 221-224.
Thomas, S. J. (2015). "NS1: A corner piece in the dengue pathogenesis puzzle?" Sci Transl Med 7(304): 304fs337.
Ulrich, H., M. M. Pillat and A. Tarnok (2020). "Dengue Fever, COVID-19 (SARS-CoV-2), and Antibody-Dependent Enhancement (ADE): A Perspective." Cytometry.
Vabret, N., G. J. Britton, C. Gruber, S. Hegde, J. Kim, M. Kuksin, R. Levantovsky, L. Malle, A. Moreira, M. D. Park, L. Pia, E. Risson, M. Saffern, B. Salome, M. Esai Selvan, M. P. Spindler, J. Tan, V. van der Heide, J. K. Gregory, K. Alexandropoulos, N. Bhardwaj, B. D. Brown, B. Greenbaum, Z. H. Gumus, D. Homann, A. Horowitz, A. O. Kamphorst, M. A. Curotto de Lafaille, S. Mehandru, M. Merad, R. M. Samstein and P. Sinai Immunology Review (2020). "Immunology of COVID-19: Current State of the Science." Immunity 52(6): 910-941
Vanroye, F., D. V. D. Bossche, I. Brosius, B. Tack, M. V. Esbroeck and J. Jacobs (2021). "COVID-19 Antibody Detecting Rapid Diagnostic Tests Show High Cross-Reactivity When Challenged with Pre-Pandemic Malaria, Schistosomiasis and Dengue Samples." Diagnostics 11(7), 1163.
Walls, A. C., Y. J. Park, M. A. Tortorici, A. Wall, A. T. McGuire and D. Veesler (2020). "Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein." Cell 181(2): 281-292.e286.
Wan, S. W., P. W. Chen, C. Y. Chen, Y. C. Lai, Y. T. Chu, C. Y. Hung, H. Lee, H. F. Wu, Y. C. Chuang, J. Lin, C. P. Chang, S. Wang, C. C. Liu, T. S. Ho, C. F. Lin, C. K. Lee, B. A. Wu-Hsieh, R. Anderson, T. M. Yeh and Y. S. Lin (2017). "Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection." J Immunol 199(8): 2834-2844.
World Health, O. (2009). Dengue guidelines for diagnosis, treatment, prevention and control : new edition. Geneva, World Health Organization.
Yan, G., C. K. Lee, L. T. M. Lam, B. Yan, Y. X. Chua, A. Y. N. Lim, K. F. Phang, G. S. Kew, H. Teng, C. H. Ngai, L. Lin, R. M. Foo, S. Pada, L. C. Ng and P. A. Tambyah (2020). "Covert COVID-19 and false-positive dengue serology in Singapore." Lancet Infect Dis 20(5): 536.
Yang, Z.-y., W.-p. Kong, Y. Huang, A. Roberts, B. R. Murphy, K. Subbarao and G. J. Nabel (2004). "A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice." Nature 428(6982): 561-564.