| 研究生: |
陳瓊玲 Chen, Chiung-Ling |
|---|---|
| 論文名稱: |
站立支持面干擾之姿勢反應的肌電圖與運動學分析 Electromyographic and Kinematic Analysis of Postural Responses to Support Surface Perturbation while Maintaining Standing Posture |
| 指導教授: |
蘇芳慶
Su, Fong-Chin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 移動平衡台 、姿勢干擾 、站立平衡 、肌電圖 、運動學 |
| 外文關鍵詞: | Moveable platform, Postural perturbation, Balance control, EMG, kinematics |
| 相關次數: | 點閱:108 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
姿勢控制是一個複雜的過程,包含接受與組織感覺輸入,計畫並經由促動協同的姿勢反應來執行動作以達到維持平衡之目標,也就是在所處的感覺環境中控制重心於支撐底面積內。姿勢干擾是指突然的改變狀態使個案偏離平衡狀況,姿勢干擾可包括生理性干擾、訊息性干擾及力學干擾。力學干擾可經由對個案之身體如頭、軀幹或肢體等部位施加外力以干擾其平衡,而臨床或實驗中最常見的力學干擾是支持面的干擾,也就是移動個案之站立支撐底面積,以引發維持平衡的姿勢反應。這些支持面干擾正如個案滑倒、絆倒、站在不規則地面或站在車子裏突然的加速或減速。
已有數種提供支持面干擾之平衡台被設計來進行平衡反應的研究,給予的干擾包括前/後平移、趾向上/向下(踝背屈/蹠屈)旋轉、多方向平移與旋轉干擾及連續性正弦曲線平移與旋轉干擾等。本實室設計了一個三自由度動作之姿勢干擾平衡台,提供前/後平移、上/下旋轉及左/右旋轉,以進行平衡評估及訓練。為了確保此平衡台可以做為提供姿勢干擾之平衡台,必須檢驗其精密度與準確度。旋轉與平移為兩種干擾型式,且向前平移與向上旋轉造成身體向後擺動,向後平移及向下旋轉造成身體向前擺動,不同干擾型式及不同身體擺動方向如何影響姿勢反應仍然未知。相較於大量平移及上下旋轉干擾的研究,左右旋轉干擾的研究較少。
所以,本研究目的在:1)檢驗三自由度動作之姿勢干擾平衡台的精密度與準確度,2)進行平移及上/下旋轉干擾之運動學姿勢反應的初步研究,3)探索平移及上/下旋轉干擾的姿勢反應,以檢驗干擾型式及擺動方向對姿勢反應的影響,及4)探索左/右旋轉干擾的姿勢反應,以檢驗旋轉速率與大小及向左/向右旋轉與張眼/閉眼旋轉對姿勢反應的影響。本研究利用肌電圖及運動學分析法檢驗正常青年針對各種支持面干擾的姿勢反應,我們相信了解維持平衡所需要的肌電圖及運動學因素將有利於設計增進姿勢平衡的治療方法及預防跌倒的策略。
研究結果顯示:1) 三自由度姿勢干擾平衡台為一個提供可靠及準確姿勢干擾的工具,2) 初步的檢驗平移與上/下旋轉干擾之運動學反應結果符合文獻中相關之研究結果,3) 平衡台干擾型式(前後平移或上下旋轉)與身體擺動方向對姿勢反應造成影響,平移型式及身體後向擺動造成較大的上身不穩定以引發快速肌肉反應與快速及較大的髖及膝關節動作;平移及垂直重心移動時間與大小也受平衡台干擾型式影響。4) 左/右旋轉干擾的速率及大小對肌肉反應的時間及大小沒有影響,但對關節動作及重心位移的時間與大小都有影響。肌肉反應、關節動作與重心位移等大部分變項在左/右旋轉或張眼/閉眼兩種情境下沒有顯著差異。本研究結果讓我們了解平衡評估與訓練時,平衡台干擾特性與反應策略,且提供我們正常個案平衡反應數據以作為與平衡異常病人比較之基礎。
Balance is a complex process involving the reception and organization of sensory inputs, planning and execution of movement by activating postural response synergy, to achieve a goal requiring upright posture. It is the ability to control the center of gravity over the base of support in a given sensory environment. Postural perturbation is a sudden exposure to conditions that displace the body away from equilibrium. These perturbations could consist of physiological, informational and mechanical perturbations. Mechanical perturbations can be applied on any body part such as push to the trunk, head or limbs. The most common experimental approach is to perturb the support surface, which displaces the base of support upon which a subject is standing. These support surface perturbations are like a slip, trip or acceleration or deceleration of support surface during vehicular motion.
Several types of support surface perturbation techniques have been developed to elicit subjects' balance reaction, including toe-up/down rotation, anterior/posterior translation, continuous sinusoidal translation and rotation, and multidirectional surface translation and rotation. In our laboratory, we have designed and built a moveable platform with three-DOF movements that can provide forward/backward translation, upward/downward rotation (pitch rotation), and right/left rotation (yaw rotation) for balance assessment and training. To ensure the usefulness of the instrument for providing postural perturbations, the precision and accuracy of the newly developed moveable platform have to be examined. Platform translation and rotation are two types of biomechanically different perturbations. Forward translation and upward rotation cause posterior body sway while backward translation and downward rotation cause anterior body sway. Whether there are fundamental differences in postural responses between the two types of perturbation and the two body sway directions remains unclear. In contrast to a large number of studies that have focused on postural reactions to surface translation and rotation in the pitch and/or roll planes, few studies have examined postural control in response to surface rotation in the horizontal plane
Therefore the purposes of this thesis were to 1) examine the precision and accuracy of the three-DOF moveable platform's movements, 2) preliminarily investigate kinematic postural responses to the platform, 3) explore the postural responses to translational and upward/downward rotational perturbation to examine the effects of the type and direction of support surface perturbation on postural responses, and 4) explore the postural responses to right/left rotational perturbations to examine the effects of velocity and amplitude on postural responses, and to compare the responses between right and left rotation and between the eyes-open and eyes-closed conditions. Electromyography (EMG) and kinematics were applied to analyze postural responses. It was believed that a basic understanding of the EMG and kinematic factors required for balance will lead to better therapeutic methods for improving posture and balance, and to strategies that can be used to prevent falls.
The results showed that 1) the three-DOF moveable platform is a reliable and valid instrument for providing postural perturbations. 2) The preliminary investigation of the kinematic postural responses to translational and upward/downward rotational perturbation showed that this platform is a useful apparatus for balance research. 3) For translational and upward/downward rotational perturbations, the results showed that there was a direction-specific muscle response pattern for translational perturbation. The timing of the muscle and joint responses did not show an ascending pattern; instead, the major contributor for balance correction would initiate first. Perturbation type and body sway direction had significant effects on postural responses as translational and posterior body sway perturbation induced larger upper body instability and evoked faster muscle activation as well as faster and larger hip or knee joint movements. The perturbation type and body sway also affected onset latency and the magnitude of horizontal and vertical COM displacements. These findings provide insights into an appropriate support surface perturbation for evaluation and training of balance. 4) For right/left rotational perturbation, the results showed that median latency postural responses were induced for right/left rotation, and distal ankle and knee muscles were activated earlier than the trunk and head muscle. The joint kinematics also demonstrated an ascending pattern, and the angle changes in axial rotation were larger than that in flexion/extension. Velocity and amplitude of the perturbation had no effect on the onset latency or magnitude of muscle activation. However, velocity and amplitude significantly affected joint movements and COM displacements. No significant differences were noted between right and left or between the eyes-open and eyes-closed conditions on most of the variables. The results provide normative data for healthy subjects that could be a basis for comparison with pathological patients.
References
Abreu, B. C. (1995). The effect of environmental regulations on postural control after stroke. American Journal of Occupational Therapy, 49(6), 517-525.
Akram, S. B., Frank, J. S., Patla, A. E., & Allum, J. H. (2008). Balance control during continuous rotational perturbations of the support surface. Gait & Posture, 27(3), 393-398.
Alexander, N. B., Shepard, N., Gu, M. J., & Schultz, A. (1992). Postural control in young and elderly adults when stance is perturbed: kinematics. Journals of Gerontology, 47(3), M79-87.
Allum, J. H., Bloem, B. R., Carpenter, M. G., & Honegger, F. (2001). Differential diagnosis of proprioceptive and vestibular deficits using dynamic support-surface posturography. Gait & Posture, 14(3), 217-226.
Allum, J. H., Carpenter, M. G., Honegger, F., Adkin, A. L., & Bloem, B. R. (2002). Age-dependent variations in the directional sensitivity of balance corrections and compensatory arm movements in man. Journal of Physiology, 542(Pt 2), 643-663.
Allum, J. H., & Honegger, F. (1992). A postural model of balance-correcting movement strategies. Journal of Vestibular Research, 2(4), 323-347.
Allum, J. H., & Honegger, F. (1998). Interactions between vestibular and proprioceptive inputs triggering and modulating human balance-correcting responses differ across muscles. Experimental Brain Research, 121(4), 478-494.
Anderson, D. C., Yolton, R. L., Reinke, A. R., Kohl, P., & Lundy-Ekman, L. (1995). The dizzy patient: a review of etiology, differential diagnosis, and management. Journal of the American Optometric Association, 66(9), 545-558.
Andersson, G., Hagman, J., Talianzadeh, R., Svedberg, A., & Larsen, H. C. (2002). Effect of cognitive load on postural control. Brain Research Bulletin, 58(1), 135-139.
Barton, G. J., Vanrenterghem, J., Lees, A., & Lake, M. (2006). A method for manipulating a movable platform's axes of rotation: a novel use of the CAREN system. Gait & Posture, 24(4), 510-514.
Bloem, B. R., Allum, J. H., Carpenter, M. G., & Honegger, F. (2000). Is lower leg proprioception essential for triggering human automatic postural responses? Experimental Brain Research, 130(3), 375-391.
Bothner, K. E., & Jensen, J. L. (2001). How do non-muscular torques contribute to the kinetics of postural recovery following a support surface translation? Journal of Biomechanics, 34(2), 245-250.
Bouisset, S., & Zattara, M. (1987). Biomechanical study of the programming of anticipatory postural adjustments associated with voluntary movement. Journal of Biomechanics, 20(8), 735-742.
Brauer, S. G., Woollacott, M., & Shumway-Cook, A. (2002). The influence of a concurrent cognitive task on the compensatory stepping response to a perturbation in balance-impaired and healthy elders. Gait & Posture, 15(1), 83-93.
Brown, L. A., Shumway-Cook, A., & Woollacott, M. H. (1999). Attentional demands and postural recovery: the effects of aging. J Gerontol A Biol Sci Med Sci, 54(4), M165-171.
Buchanan, J. J., & Horak, F. B. (1999). Emergence of postural patterns as a function of vision and translation frequency. Journal of Physiology, 81(5), 2325-2339.
Burleigh, A. L., Horak, F. B., & Malouin, F. (1994). Modification of postural responses and step initiation: evidence for goal-directed postural interactions. Journal of Neurophysiology, 72(6), 2892-2902.
Cappa, P., Patane, F., Rossi, S., Petrarca, M., Castelli, E., & Berthoz, A. (2008). Effect of changing visual condition and frequency of horizontal oscillations on postural balance of standing healthy subjects. Gait & Posture, 28(4), 615-626.
Carpenter, M. G., Allum, J. H., & Honegger, F. (1999). Directional sensitivity of stretch reflexes and balance corrections for normal subjects in the roll and pitch planes. Experimental Brain Research, 129(1), 93-113.
Carpenter, M. G., Thorstensson, A., & Cresswell, A. G. (2005). Deceleration affects anticipatory and reactive components of triggered postural responses. Experimental Brain Research, 167(3), 433-445.
Chandler, J. M., Duncan, P. W., & Studenski, S. A. (1990). Balance performance on the postural stress test: comparison of young adults, healthy elderly, and fallers. Physical Therapy, 70(7), 410-415.
Chen, C., Lee, J. Y., Horng, R. F., Lou, S. Z., & Su, F. C. (2009). Development of a three-degrees-of-freedom moveable platform for providing postural perturbations. Proceedings of the Institution of Mechanical Engineers- Part H: Journal of Engineering in Medicine, 223(1), 87-97.
Chou, L. S., Kaufman, K. R., Brey, R. H., & Draganich, L. F. (2001). Motion of the whole body's center of mass when stepping over obstacles of different heights. Gait & Posture, 13(1), 17-26.
Commissaris, D. A., Nieuwenhuijzen, P. H., Overeem, S., de Vos, A., Duysens, J. E., & Bloem, B. R. (2002). Dynamic posturography using a new movable multidirectional platform driven by gravity. Journal of Neuroscience Methods, 113(1), 73-84.
Corna, S., Tarantola, J., Nardone, A., Giordano, A., & Schieppati, M. (1999). Standing on a continuously moving platform: is body inertia counteracted or exploited? Experimental Brain Research, 124(3), 331-341.
Crane, B. T., Viirre, E. S., & Demer, J. L. (1997). The human horizontal vestibulo-ocular reflex during combined linear and angular acceleration. Experimental Brain Research, 114(2), 304-320.
de Leva, P. (1996a). Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. Journal of Biomechanics, 29(9), 1223-1230.
de Leva, P. (1996b). Joint center longitudinal positions computed from a selected subset of Chandler's data. Journal of Biomechanics, 29(9), 1231-1233.
Dempster, W. T. (1955). Space Requirements for the Seated Operator. Wright-Patterson Air Force Base, OH, WADC Tech. Rep. , 55-159.
Diener, H. C., Bootz, F., Dichgans, J., & Bruzek, W. (1983). Variability of postural "reflexes" in humans. Experimental Brain Research, 52(3), 423-428.
Diener, H. C., Dichgans, J., Bootz, F., & Bacher, M. (1984). Early stabilization of human posture after a sudden disturbance: influence of rate and amplitude of displacement. Experimental Brain Research, 56(1), 126-134.
Diener, H. C., Horak, F. B., & Nashner, L. M. (1988). Influence of stimulus parameters on human postural responses. Journal of Neurophysiology, 59(6), 1888-1905.
Dietz, V., Kowalewski, R., Nakazawa, K., & Colombo, G. (2000). Effects of changing stance conditions on anticipatory postural adjustment and reaction time to voluntary arm movement in humans. Journal of Physiology, 524 Pt 2, 617-627.
Duncan, P. W., Studenski, S., Chandler, J., Bloomfeld, R., & LaPointe, L. K. (1990). Electromyographic analysis of postural adjustments in two methods of balance testing. Physical Therapy, 70(2), 88-96.
Foster, E. C., Sveistrup, H., & Woollacott, M. H. (1996). Transitions in Visual Proprioception: A Cross-Sectional Developmental Study of the Effect of Visual Flow on Postural Control. Journal of Motor Behavior, 28(2), 101-112.
Gu, M. J., Schultz, A. B., Shepard, N. T., & Alexander, N. B. (1996). Postural control in young and elderly adults when stance is perturbed: dynamics. J Biomech, 29(3), 319-329.
Henry, S. M., Fung, J., & Horak, F. B. (1998). EMG responses to maintain stance during multidirectional surface translations. Journal of Neurophysiology, 80(4), 1939-1950.
Horak, F. B. (1987). Clinical measurement of postural control in adults. Physical Therapy, 67(12), 1881-1885.
Horak, F. B., Henry, S. M., & Shumway-Cook, A. (1997). Postural perturbations: new insights for treatment of balance disorders. Physical Therapy, 77(5), 517-533.
Horak, F. B., & Nashner, L. M. (1986). Central programming of postural movements: adaptation to altered support-surface configurations. Journal of Neurophysiology, 55(6), 1369-1381.
Horak, F. B., Shupert, C. L., Dietz, V., & Horstmann, G. (1994). Vestibular and somatosensory contributions to responses to head and body displacements in stance. Experimental Brain Research, 100(1), 93-106.
Hughes, M. A., Schenkman, M. L., Chandler, J. M., & Studenski, S. A. (1995a). Postural responses to platform perturbation: kinematics and electromyography. Clinical Biomechanics (Bristol, Avon), 10(6), 318-322.
Hughes, M. A., Schenkman, M. L., Chandler, J. M., & Studenski, S. A. (1995b). Postural responses to platform perturbation: kinematics and electromyography. Clinical Biomechanics, 10(6), 318-322.
Hughey, L. K., & Fung, J. (2005). Postural responses triggered by multidirectional leg lifts and surface tilts. Experimental Brain Research, 165(2), 152-166.
Inglis, J. T. S., C. L. Horak, F. B. (1995). The effect of galvanic vestibular stimulation on human postural responses during support surface translations. J Neurophysil, 73, 896-901.
Kao, A. C., Nanda, A., Williams, C. S., & Tinetti, M. E. (2001). Validation of dizziness as a possible geriatric syndrome. Journal of the American Geriatrics Society, 49(1), 72-75.
Keshner, E. A., Allum, J. H., & Pfaltz, C. R. (1987). Postural coactivation and adaptation in the sway stabilizing responses of normals and patients with bilateral vestibular deficit. Experimental Brain Research, 69(1), 77-92.
Keshner, E. A., Woollacott, M. H., & Debu, B. (1988). Neck, trunk and limb muscle responses during postural perturbations in humans. Experimental Brain Research, 71(3), 455-466.
Kodaka, Y., Miura, K., Suehiro, K., Takemura, A., & Kawano, K. (2004). Ocular tracking of moving targets: effects of perturbing the background. Journal of Neurophysiology, 91(6), 2474-2483.
Kubo, M., Holt, K. G., Saltzman, E., & Wagenaar, R. C. (2006). Changes in axial stiffness of the trunk as a function of walking speed. Journal of Biomechanics, 39(4), 750-757.
Kuo, A. D. (1995). An optimal control model for analyzing human postural balance. IEEE Transactions on Biomedical Engineering, 42(1), 87-101.
Lawson, G. D., Shepard, N. T., Oviatt, D. L., & Wang, Y. (1994). Electromyographic responses of lower leg muscles to upward toe tilts as a function of age. Journal of Vestibular Research, 4(3), 203-214.
Lees, A., Vanrenterghem, J., Barton, G., & Lake, M. (2007). Kinematic response characteristics of the CAREN moving platform system for use in posture and balance research. Medical Engineering & Physics, 29(5), 629-635.
Maki, B. E., & McIlroy, W. E. (1997). The role of limb movements in maintaining upright stance: the "change-in-support" strategy. Physical Therapy, 77(5), 488-507.
Massion, J., Ioffe, M., Schmitz, C., Viallet, F., & Gantcheva, R. (1999). Acquisition of anticipatory postural adjustments in a bimanual load-lifting task: normal and pathological aspects. Experimental Brain Research, 128(1-2), 229-235.
Matjacic, Z., Voigt, M., Popovic, D., & Sinkjaer, T. (2001). Functional postural responses after perturbations in multiple directions in a standing man: a principle of decoupled control. Journal of Biomechanics, 34(2), 187-196.
McConville, J. T., Churchill, T. D., Kaleps, I., Clauser, C. D., & Cuzzi, J. (1980). Anthropometric Relationships of Body Segments of Inertia. United States Air Force Aerospace Medical Research Laboratory, AFAMRL-TR-, 80-119.
McIlroy, W. E., & Maki, B. E. (1994). The 'deceleration response' to transient perturbation of upright stance. Neuroscience Letters, 175(1-2), 13-16.
Moore, S. P., Rushmer, D. S., Windus, S. L., & Nashner, L. M. (1988). Human automatic postural responses: responses to horizontal perturbations of stance in multiple directions. Experimental Brain Research, 73(3), 648-658.
Morris, M., Iansek, R., Smithson, F., & Huxham, F. (2000). Postural instability in Parkinson's disease: a comparison with and without a concurrent task. Gait & Posture, 12(3), 205-216.
Nardone, A., Corra, T., & Schieppati, M. (1990). Different activations of the soleus and gastrocnemii muscles in response to various types of stance perturbation in man. Experimental Brain Research, 80(2), 323-332.
Nardone, A., Giordano, A., Corra, T., & Schieppati, M. (1990). Responses of leg muscles in humans displaced while standing. Effects of types of perturbation and of postural set. Brain, 113 ( Pt 1), 65-84.
Nashner, L. M. (1976). Adapting reflexes controlling the human posture. Experimental Brain Research, 26(1), 59-72.
Nashner, L. M. (1977). Fixed patterns of rapid postural responses among leg muscles during stance. Experimental Brain Research, 30(1), 13-24.
Nashner, L. M., Black, F. O., & Wall, C., 3rd. (1982). Adaptation to altered support and visual conditions during stance: patients with vestibular deficits. Journal of Neurophysiology, 2(5), 536-544.
Nashner, L. M., Woollacott, M., & Tuma, G. (1979). Organization of rapid responses to postural and locomotor-like perturbations of standing man. Experimental Brain Research, 36(3), 463-476.
Ng, J. K., Parnianpour, M., Richardson, C. A., & Kippers, V. (2001). Functional roles of abdominal and back muscles during isometric axial rotation of the trunk. Journal of Orthopaedic Research, 19(3), 463-471.
Novellino, A., DeNunzio, A. M., Nardone, A., Pittaluga, E., & Schieppati, M. (2004). A new device for balance assessment and rehabilitation. Paper presented at the 10th Mediterranean Conference of the International Federation for Medical and Biological Engineering, IFMBE. Ischia, Italia.
Owings, T. M., Pavol, M. J., & Grabiner, M. D. (2001). Mechanisms of failed recovery following postural perturbations on a motorized treadmill mimic those associated with an actual forward trip. Clinical Biomechanics (Bristol, Avon), 16(9), 813-819.
Paquette, C., & Fung, J. (2007). Temporal facilitation of gaze in the presence of postural reactions triggered by sudden surface perturbations. Neuroscience, 145(2), 505-519.
Petersen, H., Magnusson, M., Fransson, P. A., & Johansson, R. (1995). Vestibular stimulation perturbs human stance also at higher frequencies. Acta Otolaryngol Suppl, 520 Pt 2, 443-446.
Pyykko, I., Enbom, H., Magnusson, M., & Schalen, L. (1991). Effect of proprioceptor stimulation on postural stability in pateints with peripheral or central vestibular lesion. Acta Oto-Laryngologica, 111, 27-35.
Rietdyk, S., Patla, A. E., Winter, D. A., Ishac, M. G., & Little, C. E. (1999). NACOB presentation CSB New Investigator Award. Balance recovery from medio-lateral perturbations of the upper body during standing. North American Congress on Biomechanics. Journal of Biomechanics, 32(11), 1149-1158.
Runge, C. F., Shupert, C. L., Horak, F. B., & Zajac, F. E. (1999). Ankle and hip postural strategies defined by joint torques. Gait & Posture, 10(2), 161-170.
Shumway-Cook, A., & Woollacott, M. (2001a). Development of postural control (2nd ed.). Baltimore, Maryland USA: Lippincott Williams & Wilkins.
Shumway-Cook, A., & Woollacott, M. (2001b). Normal postural control (2nd ed.). Baltimore, Maryland USA: Lippincott Williams & Wilkins.
Shumway-Cook, A., Woollacott, M., Kerns, K. A., & Baldwin, M. (1997). The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 52(4), M232-240.
Szturm, T., & Fallang, B. (1998). Effects of varying acceleration of platform translation and toes-up rotations on the pattern and magnitude of balance reactions in humans. Journal of Vestibular Research, 8(5), 381-397.
Tornetta, P., 3rd, Mostafavi, H., Riina, J., Turen, C., Reimer, B., Levine, R., et al. (1999). Morbidity and mortality in elderly trauma patients. Journal of Trauma, 46(4), 702-706.
Torres-Oviedo, G., & Ting, L. H. (2007). Muscle synergies characterizing human postural responses. Journal of Neurophysiology, 98(4), 2144-2156.
Toussaint, H. M., Commissaris, D. A., Hoozemans, M. J., Ober, M. J., & Beek, P. J. (1997). Anticipatory postural adjustments before load pickup in a bi-manual whole body lifting task. Medicine & Science in Sports & Exercise, 29(9), 1208-1215.
Toussaint, H. M., Michies, Y. M., Faber, M. N., Commissaris, D. A., & van Dieen, J. H. (1998). Scaling anticipatory postural adjustments dependent on confidence of load estimation in a bi-manual whole-body lifting task. Experimental Brain Research, 120(1), 85-94.
Van Emmerik, R. E., McDermott, W. J., Haddad, J. M., & Van Wegen, E. E. (2005). Age-related changes in upper body adaptation to walking speed in human locomotion. Gait & Posture, 22(3), 233-239.
Westcott, S. L., Lowes, L. P., & Richardson, P. K. (1997). Evaluation of postural stability in children: current theories and assessment tools. Physical Therapy, 77(6), 629-645.
Winter, D. A., Patla, A. E., Prince, F., Ishac, M., & Gielo-Perczak, K. (1998). Stiffness control of balance in quiet standing. Journal of Neurophysioogyl, 80(3), 1211-1221.
Woltring, H. J. (1986). A FORTRAN package for generalized, cross-validatory spline smoothing and differentiation. Advances in Engineering Software, 8, 104-113.
Woollacott, M. H., & Shumway-Cook, A. (1990). Changes in posture control across the life span--a systems approach. Physical Therapy, 70(12), 799-807.
Woollacott, M. H., von Hosten, C., & Rosblad, B. (1988). Relation between muscle response onset and body segmental movements during postural perturbations in humans. Experimental Brain Research, 72(3), 593-604.