簡易檢索 / 詳目顯示

研究生: 張峻隆
Chang, Chun-Lung
論文名稱: 符合ANSI S1.11 Class-0非等頻寬之FFT Filter-bank演算法及硬體設計
Non-Uniform ANSI S1.11 Class-0 FFT-based Filter Banks Algorithm and Its Hardware Design for Digital Hearing Aids
指導教授: 雷曉方
Lei, Sheau-Fang
共同指導教授: 賴信志
Lai, Shin-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 155
中文關鍵詞: ANSI S1.11快速傅立葉轉換非等頻寬濾波器組數位助聽輔具
外文關鍵詞: ANSI S1.11, FFT, Filter-bank, Digital Hearing-aids
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個以快速傅利葉轉換(FFT)為基礎的非等頻寬濾波器組(Non-uniform Filter-bank),能夠符合ANSI S1.11 Class-0規格的演算法,適合應用於數位助聽輔具設計。有別於過去文獻採用的平行式架構或多速率架構的濾波器組,本論文嘗試使用快速傅立葉轉換(FFT)作為核心,藉由頻域訊號的處理,將短時間的頻譜能量做調整,達到訊號的濾波效果。本架構之優點為各個子頻帶之間沒有群延遲差異,使得合成的訊號品質較佳,並且有較低的運算複雜度,相較於2013年Kuo et al.近似ANSI S1.11 Class-2規格等級的最新文獻設計,本論文提出的設計方式能減少35.8%的乘法運算和7.5%的加法運算。
    在FFT Filter-bank硬體設計方面,2013年Kuo et al.最新文獻需要8個乘法器和8個加法器,並且只實現分析端的濾波器組;而本論文實現分析端與合成端的濾波器組,總共只需要3個乘法器和9個加法器,並且能減少18.5%的正規化功率消耗,即時化(Real-time)操作時脈僅需要3.32MHz。晶片實作使用TSMC 0.18um製程實現,封裝使用CQFP128作為晶片包裝,晶片的核心面積為1.4×1.4 mm2,晶片量測之總功率消耗為3.01mW@3.32MHz。

    This thesis proposes an efficiently FFT-based class-0 ANSI S1.11 1/3-octave filter-banks design with the advantages of zero band group delay mismatch and low computational complexity. Compared with recent Kuo et al.’s quasi-class-2 ANSI S1.11 design, the proposed design totally has 35.8% of multiplication and 7.5% of addition reductions. In chip realization, the core size is 1.4×1.4 mm2 by using TSMC 0.18um CMOS process. The power consumption for overall ANSI S1.11 class-0 analysis and synthesis filterbank is 3.01 mW @ 3.32 MHz measured by CIC’s Agilent 93000 SoC Series. The maximum and real-time operation frequencies are, respectively, 17 and 3.32 MHz. Therefore, it would be more suitable for high-level applications of digital hearing aids in the future.

    摘要 i EXTENDED ABSTRACT iii 誌謝 xi 目錄 xiii 表目錄 xvii 圖目錄 xviii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 ANSI S1.11規格介紹 6 1.3 文章節組織 10 第二章 文獻回顧 11 2.1 Chong et al. 16通道非等頻寬濾波器組[4] 11 2.2 Kuo et al.符合ANSI S1.11濾波器組設計[5] 13 2.3 FFT濾波理論 17 2.3.1 基本濾波概念 21 2.3.2 頻譜洩漏影響 22 2.3.3 頻率解析度影響 22 2.3.4 窗函數應用 23 2.3.5 群延遲影響 26 2.4 WOLA(Weight Overlap-add)[12] 27 2.5 完美重建(Perfect Reconstruction) 33 第三章 符合ANSI S1.11 FFT Filter-Bank 35 3.1 頻率解析度的選定 35 3.2 窗函數的選擇 38 3.3 符合ANSI S1.11規格之FFT-FB演算法 51 3.4 符合ANSI S1.11規格之FFT-FB設計流程 59 3.5 FFT-FB Pseudo MATLAB Code 68 第四章 演算法分析與比較 75 4.1 頻帶交疊影響之結果比較 75 4.2 最大旁瓣衰減程度之影響與比較 77 4.3 濾波響應結果比較 79 4.4 群延遲結果比較 81 4.5 FFT-FB重建分析 83 4.5.1 輸入脈衝訊號做重建分析 84 4.5.2 輸入弦波訊號做重建分析 89 4.5.3 輸入隨機訊號做重建分析 91 4.5.4 重建結果與分析 92 4.6 FFT-FB聽力記錄單匹配結果 94 4.6.1 使用符合ANSI S1.11規格之FFT-FB做模擬與分析 94 4.6.2 使用FFT-FB逐點最佳化調整做模擬與分析 99 第五章 硬體架構設計與實作結果 105 5.1 硬體架構設計 105 5.1.1 FFT處理器架構設計 105 5.1.2 蝴蝶圖運算單元設計 107 5.1.3 記憶體單元設計 107 5.1.4 複數乘法器單元 111 5.1.5 旋轉因子產生器 113 5.2 硬體設計流程 114 5.3 硬體實作與驗證 125 5.3.1 實作與驗證設計流程 125 5.3.2 定點數模擬與系統架構 126 5.3.3 模擬與驗證 129 5.4 實作結果與比較 132 5.4.1 實作結果 132 5.4.2 分析比較 134 5.5 FFT-FB運算複雜度分析 142 5.5.1 乘法運算複雜度分析 142 5.5.2 加法運算複雜度分析 145 5.5.3 綜合分析 148 5.6 演算法規格比較 149 第六章 結論與未來展望 151 參考文獻 153

    [1]“ANSI Standard S1.11-2004,” Specification for Octave-Band and Fractional-Octave-Band Analog and Digital Filters.
    [2] L. S. Nielsen and J. Sparso, “Designing asynchronous circuits for low power: An IFIR filter bank for a digital hearing aid,” in Proc. IEEE, vol. 87, no. 2, pp. 268–281, Feb. 1999.
    [3] H. Li, G. A. Jullien, V. S. Dimitrov, M. Ahmadi, and W. Miller, “A 2-digit multidimensional logarithmic number system filter bank for a digital hearing aid architecture,” in Proc. IEEE Int. Symp. Circuits Syst., pp. II-760–763, 2002.
    [4] K.-S. Chong, B.-H. Gwee and J.-S. Chang, “A 16-channel low-power nonuniform spaced filter bank core for digital hearing aid,” IEEE Tran. Circuits Syst., vol. 53, no. 9, pp.853–857, 2006.
    [5] Y.-T. Kuo, T.-J. Lin, Y.-T. Li, and C.-W. Liu, “Design and implementation of low-power ANSI S1.11 filter bank for digital hearing aids,” IEEE Trans. Circuits Syst. I, vol. 57, no.7, pp. 1684–1696, Jul. 2010.
    [6] Matthew W. Spitzer, Avinash D. S. Bala and Terry T. Takahashi, “A neuronal correlate of the precedence effect is associated with spatial selectivity in the barn owl's auditory midbrain,” Journal of Neurophysiology, vol. 92, no. 4, pp. 2051–2070, Oct. 2004.
    [7] Ching-Hao Lin, Kuo-Chiang Chang, Ming-Hsun Chuang and Chih-Wei Liu , “Design and implementation of 18-band Quasi-ANSI S1.11 1/3-octave filter bank for digital hearing aids,” VLSI Design, Automation, and Test (VLSI-DAT), pp.1–4, Apr. 2012.
    [8] Y.-T. Kuo, T.-J. Lin, Y.-T. Li, and C.-W. Liu, “10-ms 18-band quasi-ANSI S1.11 1/3-octave filter bank for digital hearing aids,” IEEE Tran. Circuits Syst. I, Reg. Papers, vol. 60, no. 3, pp. 638–649, Mar. 2013.
    [9] J. O. Smith, “Audio FFT filter banks,” in Proc. 12th Int. Conf. Digital Audio Effects (DAFx-09), Como, Italy, Sep.2009.
    [10] “Versatile FFT Supports Accurate 1/3 Octave Analysis,” Copyright © 2010, Microstar Laboratories, Inc., http://www.mstarlabs.com/docs/tn257.pdf
    [11] Masahiro Umehira and Motohiro Tanabe, “Performance analysis of overlap FFT filter-bank for dynamic spectrum access application,” 16th Asia-Pacific Conference on Communications (APCC), 2010.
    [12] R. Crochiere, “A weighted overlap-add method of short-time Fourier analysis/synthesis,” IEEE Transactions on Acoustics, Speech, Signal Processing, vol. ASSP-28, pp. 99–102, Feb. 1980.
    [13] “Understanding FFT windows,” Application Note Ano14, http://www.physik.uni-wuerzburg.de/~praktiku/Anleitung/Fremde/ANO14.pdf
    [14] Alan V. Oppenheim and Ronald W. Schafer with John R. Buck, Discrete-time Signal Processing, 2nd ed., Prentice-Hall, 1999, ch.7.
    [15] V. Gnann and M. Spiertz, “Improving RTISI phase estimation with energy order and phase unwrapping,” in Proc.of the 13th Int. Conference of Digital Audio Effects (DAFx-10), Graz, Austria, pp. 367–371, Sep. 2010.
    [16] Takanori Sato and Masahiro Umehira, “A new spectrum sensing scheme using overlap FFT filter-bank for dynamic spectrum access,” in Proc.of 6th International ICST Conference in Cognitive Radio Oriented Wireless Networks and Communications (CROWNCON), pp.6–10, 2011.
    [17] M. R. Portnoff, “Time scale modification of speech based on short-time Fourier analysis,” Ph.D. dissertation, Massachusetts Inst. Tech., Cambridge, Apr. 1978.
    [18] A. Jain, R. Saxena, and S.C. Saxena, “A simple alias-free QMF system with near-perfect reconstruction,” J. Indian Ins. Sci., no.12, pp. 1–10, Jan.–Feb. 2005.
    [19] J. D. Johnston, “A filter family designed for use in quadrature mirror filter banks,” Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, pp. 291–294, 1980.
    [20] D. Byrne, H. Dillon, T. Ching, R. Katsch, and G. Keidser, “NAL-NL1 procedure for fitting nonlinear hearing aids: characteristics and compositions with other procedures,” Journal of the American Academy of Audiology, vol. 12, no. 1, pp. 37–54, Jan. 2001.
    [21] G. Keidser, H. Dillon, M. Flax, T. Ching, and S. Brewer, “The NAL-NL2 prescription procedure,” Audiology Research, vol. 1 no. 1, pp. 88-90, 2011.
    [22] Y. Lian and Y. Wei, “A Computationally Efficient Non-Uniform FIR Digital Filter Bank for Hearing Aid,” IEEE Tran. Circuits Syst. I, Reg. Papers, vol. 52, no. 12, pp. 2754-2762, Dec. 2005.
    [23] Y. Wei and D. Liu, “A Reconfigurable Digital Filterbank for Hearing-Aid Systems with a Variety of Sound Wave Decomposition Plans,” IEEE Trans. on Biomedical Engineering, vol. 60, no. 6, pp.1628-1635, June 2013.
    [24] Chua-Chin Wang, Jian-Ming Huang, and Hsian-Chang Cheng, “A 2K/8K mode small-area FFT processor for OFDM demodulation of DVB-T receivers,” IEEE Transactions on Consumer Electronics, vol. 51, no. 1, pp. 28–32, Feb. 2005.
    [25] Shousheng He, and Mats Torkelson, “Designing pipeline FFT processor for OFDM (de)modulation,” URSI International Symposium on Signals, Systems, and Electronics, pp. 257–262, Oct. 1998.
    [26] 李岳書。適用於數位/行動電視廣播系統(DVB-T/H)之高效能可變點數快速傅立葉轉換處理器。台灣:逢甲大學電子工程學系電子研究所碩士論文。1999。
    [27] Hsin-Fu Lo, Ming-Der Shieh, and Chien-Ming Wu, “Design of an efficient FFT processor for DAB system,” IEEE International Symposium on Circuits and Systems, vol. 4, pp. 654–657, May 2001.
    [28] Bevan M. Baas, “A low-power, high-performance, 1024-point FFT processor,” IEEE J. SOLID-STATE CIRCUITS, vol. 34, no.3, pp.380–387, Mar. 1999.
    [29] Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, 2nd ed., 1999, ch.18.

    無法下載圖示 校內:2019-09-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE