簡易檢索 / 詳目顯示

研究生: 張仲凱
Chang, Chung Kai
論文名稱: 藉雙層線圈架構之高效率四線圈無線傳能於深腦電刺激研究
Efficient Four-Coil Wireless Power Transfer by Using Dual-Layer Coil Structures for Deep Brain Stimulation
指導教授: 楊慶隆
Yang, Chin-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 74
中文關鍵詞: 生醫頻帶無線傳能共振耦合線圈設計反射負載理論耦合模態理論
外文關鍵詞: Deep Brain Stimulation, Functional Electrical Stimulation, Power Transfer Efficiency, Wireless Power Transfer
相關次數: 點閱:95下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出新型之線圈設計應用於生醫植入裝置於無線傳能(Wireless Power Transfer, WPT)系統傳輸效率。應用於生醫植入環境下之傳能系統受限於小空間之傳能線圈導致低傳輸效率,本研究提出提高小型化線圈最大效率之設計,並結合前端功率放大電路特性進行系統優化,藉探究微型化無線傳能線圈之基礎理論,建立設計與優化之準則。本論文提出即使在有限之植入空間,仍可藉著多層立體之空間達到更高自由度和最佳化,配合FR4版雙層設計來實現,並藉此微完成高Q值、高耦合係數植入式線圈設計,提高小植入面積下之傳輸效率。研究結合了無線傳能技術與生醫應用領域應用,開發操作於13.56 MHz頻帶的一微型化植入式線圈,並且完成整合即時資料偵測與電刺激系統。研究中包括線圈特性探討、微小化線圈設計、四線圈傳能系統(4-coil WPT)、雙層線圈技術、系統整合之技術開發,提高植入式線圈效率研究與降低生醫植入式環境的影響,且設計前端高效率Class-E功率放大器來達到後端能量的需求。
    在實驗過程中,所實現的最佳4-Coil WPT線圈系統,植入線圈面積為25 mm2,在生物組織環境距離10毫米下量測PTE效率為11.7%,相較於傳統二線圈無線傳能系統提升了5.1倍,成功提升了植入線圈組織中之無線傳能效率。經由FOM所算為94,為所比較文獻中最高。本系統先經由高效率的四線圈無線傳能系統發射1瓦的功率,成功進行低功率整合深腦刺激(Deep Brain Stimulation, DBS)系統驗證,供應微晶片、藍芽傳輸、與最大電流為180微安之電刺激等電路。本篇論文不僅是設計植入式線圈,對微波通訊上,基板的空間高自由度、低成本、低重量等,其優越的高效率與無線傳能之便利性將成為未來的科技趨勢。

    This thesis presents a novel coil design to improve the efficiency of the wireless energy transfer (WPT) system applying in biomedical implantable devices. Due to the limited space in biomedical implantable applications, the transmission efficiency drops significantly. This study proposed a high efficient compact coil design, combining with the front-end power amplifier for system optimization. The fundamental theories of miniaturized WPT coil parameters were studied for the for the design and optimization. Even under the very limited space, this thesis proposes the multi-layer 3D design to achieve higher degree of freedom design and WPT system optimization. The proposed system can be simply implemented with double-layer FR4 substrate and achieves a high WPT efficiency under a small implant area.
    This study integrates a WPT technologies and biomedical applications. Miniaturized implantable coils were developed to operate at 13.56 MHz. Moreover, and functional electrical stimulation (FES) systems were integrated as a whole deep brain stimulation (DBS) test system. This thesis includes investigation of the WPT coil, the miniaturization design, four-coil WPT, dual-layer coil technology, and the whole system integration. The proposed system improves the power transfer efficiency (PTE) of the implantable coil system and mitigates the implantable environment influences on power deliver. Design of the high efficient Class-E power amplifier to achieve the power demand for the DBS. The main objective is to integrate the proposed WPT systems with an implantable FES system. The fundamental equations for WPT were analyzed to assist and verify the design.
    During the experiment, the distance between transmitting coil and receiving coil is standardized as a common baseline for comparison. The optimal 4-Coil WPT coil system was fabricated with a implanted coil area of 25 mm2. At a distance of 10 mm in biological tissue environments, the PTE was measured to 11.7%, which was improved by 5.1 times compared to the traditional two-coil WPT system. The PTE using a small coil through tissue was successfully and significantly enhanced. Finally, Figure-of-Merit (FOM) is 94, FOM is defined and the proposed system has the optimal efficiency. By using this high efficient four-coil WPT system, 100-mW power amplifier successfully supply the power for the integration of low-power DBS system, including the micro-processor, the Bluetooth transmission, and FES with a maximum current of 180 μA. This thesis provides the outstanding design of the 2-layer coil not only for implantable devices, but also for microwave or commercial communications. Such a high degree of freedom WPT coil design in a low cost, low weight substrate can be applied widespread fields.

    Abstract ii Acknowledgement (誌謝) xi 目錄 xiv 圖目錄 xvi 表目錄 xviii 第一章 緒論 1 1.1 無線傳能的研究背景與動機 1 1.2 無線傳能的生醫應用 4 1.3 無線傳能植入晶片技術 6 1.3.1 微植入技術分析 9 1.3.2 Deep Brain Stimulation (DBS) 10 1.4 論文架構 10 1.5 研究貢獻 11 第二章 線圈參數分析 13 2.1 感應線圈特性 13 2.2 線圈參數分析 15 2.2.1 自感值、內阻值與品質因素 15 2.2.2 寄生電容與等效電路模型 16 2.2.3 線圈設計 17 2.2.4 傳輸能量頻率選擇 19 2.3 線圈耦合 20 2.3.1 互感值與耦合係數計算 20 2.3.2 互感值與耦合係數量測 21 第三章 線圈電路分析 23 3.1 諧振電路分析 23 3.2 反射負載理論 24 3.3 線圈規格、量測結果 28 3.4 線圈優化、創新 32 3.4.1 植入線圈限制 34 3.4.2 最佳線圈的直徑 38 3.4.3 耦合效率通過空氣測量 44 3.4.4 耦合效率通過組織測量 47 3.4.5 植入線圈WPT系統比較 50 第四章 系統量測 53 4.1 系統區塊介紹 53 4.2 生醫環境 56 4.3 前端驅動電路 59 4.4 刺激電路量測 64 4.5 Specific Absorption Rate (SAR) 66 第五章 結論與未來工作 69 5.1 結論 69 5.2 未來工作 69 參考資料 71

    [1]N. Tesla, Colorado Springs – Notes, Nolit, Belgrade, 1978.
    [2]W. C. Brown, J. R. Mims, and N. I. Heenan, “An Experiemental Microwave-Powered Helicopter,” IRE International Convention Record, v. 13, part 5, pp. 225-235, Mar. 1965.
    [3]W. C. Brown, “The History of Power Transmission by Radio Waves,” IEEE Trans on Microwave Theory and Techniques, Sep. 1984.
    [4]A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless Power Transfer Via Strongly Coupled Magnetic Resonances,” Science express, vol. 317, no. 5834, pp. 83–86, Jul. 2007.
    [5]A.M. Kuncel and W. M. Grill, “Selection of Stimulus Parameters for Deep Brain Stimulation,” Clin. Neurophysiol., vol. 115, no. 11, pp. 2431–2441, Nov. 2004.
    [6]http://web.mit.edu/newsoffice/2007/wireless-0607.html
    [7]J. Lee, “Column—Good Timing to Develop Biomedical Electronics,” Economic Daily News, 2010.
    [8]E. Y. Chow, M. M. Morris, and P. Irazoqui, “Implantable RF Medical Devices,” IEEE Microw., vol. 14, no. 4, pp. 64–73, Jun. 2013.
    [9]K. Arshak, E. Jafer, G. Lyons, D. Morris, and O. Korostynska, “A Review of Low-Power Wireless Sensor Microsystems for Biomedical Capsule Diagnosis,” Microelectron. Int., v.21, i.3, pp. 8-19, 2004.
    [10]J. Wyatt, “Steps Toward the Development of a Chronic Retinal Implant,” International Workshop on Wearable and Implantable Body Sensor Networks, 2006.
    [11]H. Marko and M.K. Maija, “Wireless System for Patient Home Monitoring,” International Symposium on Wireless Pervasive Computing, Feb. 2007.
    [12]W. Liu et al., “A Neuro-Stimulus Chip with Telemetry Unit for Retinal Prosthetic Device,” IEEE J. Solid State Circuits, vol. 35, pp. 1487-1497, Oct. 2000.
    [13]E. Y. Chow, C.-L. Yang, A. Chlebowski, S. Moon, W. J. Chappell, and P. P. Irazoqui, “Implantable Wireless Telemetry Boards for In-Vivo Transocular Transmission”, IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 12, Dec. 2008, pp. 3200-3208
    [14]UCSF Medical Center, http://www.ucsfhealth.org
    [15]P.C. Loizou, “Introduction to Cochlear Implants,” IEEE Engineering in Medicine and Biology Magazine, v. 18, i. 1, pp. 32-42, Jan/Feb. 1999.
    [16]L.S.Y. Wong, S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, H. Naas, “A Very Low-Power CMOS Mixed-signal IC for Implantable Pacemaker Applications,” IEEE Journal of Solid-State Circuits, v. 39, i. 12, pp. 2446 – 2456, Dec. 2004.
    [17]D. Halperin, T.S. Heydt-Benjamin, B. Ransford, S.S. Clark, B. Defend, W. Morgan, K. Fu, T. Kohno, and W.H. Maisel, “Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses,” IEEE Symposium on Security and Privacy, pp. 129-142, May. 2008.
    [18]Diabetes Health Center, http://diabetes.webmd.com/continuous-glucose-monitoring
    [19]J. Lee, H. G. Rhew, D. Kipke, and M. Flynn, “A 64 Channel Programmable Closed-loop Deep Brain Stimulator with 8 Channel Neural Amplifier and Logarithmic ADC,” 2008 IEEE Symposium on VLSI Circuits, pp. 76-77, Jun. 2008.
    [20]Stanley Fahn, Recent Developments in Parkinson's Disease, Raven Pr, 1986.
    [21]R. Dai, R. Stein, J. Andrew, K. B. James, and M. Wieler, “Application of Tilt Sensor in Functional Electrical Stimulation,” IEEE Trans. Rehabil. Eng., vol. 4, no. 2, pp. 63-72, Jun. 1996.
    [22]A.M. Kuncel and W. M. Grill, “Selection of Stimulus Parameters for Deep Brain Stimulation,” Clin. Neurophysiol., vol. 115, no. 11, pp. 2431–2441, Nov. 2004.
    [23]J. D. Weiland and M. S. Humayun, “A Biomimetic Retinal Stimulating Array,” IEEE Eng. Med. Biol. Mag., vol. 24, no. 5, pp. 14–21, Sep. 2005.
    [24]H. M. Lee, K. Y. Kwon, W. Li, and M. Ghovanloo, “A Power-Efficient Switched-Capacitor Stimulating System for Electrical/Optical Deep Brain Stimulation,” IEEE Solid-State Circuits, vol.50, no.1, pp.360-374, Jan. 2015.
    [25]D. B. Shire, S. K. Kelly, J. Chen, P. Doyle, M. D. Gingerich, S. F. Cogan, and W. A. Drohan, et al., “Development and Implantation of a Minimally Invasive Wireless Subretinal Neurostimulator,” IEEE Trans. Biomed. Eng., vol. 56, no. 10, pp. 2502-2511, Oct. 2009.
    [26]S. Khosravani, N. Lahimgarzadeh, and A. Maleki, “Developing a Stimulator and Interface for FES-cycling Rehabilitation System,” in Proc. IEEE ICBME’11, 2011, pp. 175-180
    [27]D.R. Merrill, M. Bikson, and J.G.R. Jefferys, “Electrical Stimulation of Excitable Tissue: Design of Efficacious and Safe Protocols,” J. Neuroscience Methods, vol. 141, pp. 171–198, Feb. 2005.
    [30]M. Kiani and M. Ghovanloo, "The Circuit Theory Behind Coupled-Mode
    Magnetic Resonance-Based Wireless Power Transmission," Circuits and
    Systems I: Regular Papers, IEEE Transactions on , vol.59, no.9,
    pp.2065,2074, Sept. 2012.
    [31]F. R. Awwad, M. Nekili, and M. Sawan, "Performance Metrics Study for Repeater-Insertion Strategies," Circuits and Systems and TAISA Conference, 2008. NEWCAS-TAISA 2008. 2008 Joint 6th International IEEE Northeast Workshop on , vol., no., pp.359,362, 22-25 June. 2008.
    [32]I. Awai, T. Komori, and T. Ishizaki, "Design and Experiment of Multi-Stage Resonator-Coupled WPT System," Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS), 2011 IEEE MTT-S International , vol., no., pp.123,126, 12-13 May. 2011.
    [33]U. Jow and M. Ghovanloo, “Design and Optimization of Printed Spiral Coil for Efficient Transcutaneous Inductive Power Transmission,” IEEE Trans. on Biomedical Circuits and Systems, vol.1, no.3, pp.193-202, Sept. 2007.
    [34]Qi System Description: Wireless Power Transfer , 2012
    [35]C. M. Zierhofer and E.S. Hochmair, “Geometric Approach for Coupling Enhancement of Magnetically Coupled Coils,” IEEE Trans.Biomed. Eng., vol. 43, no. 7, pp. 708–714, Jul. 1996.
    [36]T. C. Beh, T. Imura, M. Kato, and Y. Hori, "Basic Study of Improving Efficiency of Wireless Power Transfer Via Magnetic Resonance Coupling Based on Impedance Matching," Industrial Electronics (ISIE), 2010 IEEE International Symposium on , vol., no., pp.2011,2016, 4-7 July. 2010.
    [37]A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient Wireless Non-Radiative Mid-Range Energy Transfer,” Ann. Phys, vol. 323, no. 1, pp. 34–48, Jan. 2008.
    [38]M. Kiani, U. M. Jow, and M. Ghovanloo, “Design and Optimization of a 3-coil Inductive Link for Efficient Wireless Power Transmission,” IEEE Transactions on Biomedical Circuits and Systems, vol.5, no.6, pp.579-591, Dec. 2011.
    [39]K. Na, H. Ma, and F. Bien, “Tracking Optimal Efficiency of Magnetic Resonance Wireless Power Transfer System for Biomedical Capsule Endoscopy,” IEEE Trans. Microwave Theory and Techniques, vol. 63, no.1, pp. 295-303, Jan. 2015.
    [40]R.F. Xue, K.W. Cheng, and M. Je, “High-Efficiency Wireless Power Transfer for Biomedical Implants by Optimal Resonant Load Transformation,” IEEE Trans. Biomedical Circuits and Systems, vol. 60, no.4, pp. 867-874, Apr. 2013.
    [41]M. Mark, Y. Chen, C. Sutardja, C. Tang, S. Gowda, M. Wagner, D. Werthimer, and J. Rabaey, “A 1mm2 2 Mbps 330 fJ/b Transponder for Implanted Neural Sensors,” in Proc. Symp. VLSI Circuits, Jun. 2011, pp. 168–169.
    [42]S. O. Driscoll, A. Poon, and T. Meng, “A mm-Sized Implantable Power Receiver with Adaptative Link Compensation,” in Proc. IEEE Int. Solid- State Circuits Conf., Feb. 2009, pp. 294–295.
    [43]M. Zargham and P.G Gulak, “Fully Integrated On-Chip coil in 0.13µm cmos for Wireless Power Transfer Through Biological Media,” IEEE Trans. Biomedical Circuits and Systems, vol. 9, no.2, pp. 259-271, Apr. 2015.
    [44]U.M. Jow and M. Ghovanloo, "Modeling and Optimization of Printed Spiral Coils in Air, Saline, and Muscle Tissue Environments," IEEE Trans. on Bi Circuits and Systems, vol.3, no.5, pp.339,346, Oct Dec. 2009.
    [45]F. Merli, L. Bolomey, J. F. Zürcher, G. Corradini, E. Meurville, and A. K. Skrivervik “A Simple Ultrawideband Planar Rectangular Printed Antenna with Band Dispensation,” IEEE Trans. Antennas Propagat., vol. 59, no. 10, pp. 3544–3555, Oct. 2011.
    [46]A. Barraud, Molecular selective interface for an implantable glucose sensor based on the viscosity variation of a sensitive fluid containing Dextran and Concanavalin A, Ph.D. dissertation, EPFL, Lausanne, 2008.
    [47]T. Houzen, M. Takahashi, K. Saito, and K. Ito, “Implanted Planar Inverted F-Antenna for Cardiac Pacemaker System,” in Int. Antenna Technol. Workshop: Small Antennas Novel Metamater., pp. 346–349, Mar. 2008.
    [48]N. O. Sokal and A. Sokal, "Class E-A new Class of High-Efficiency Tuned Single-Ended Switching Power Amplifiers," IEEE Journal of Solid-State Circuits, vol.10, no.3, pp.168,176, Jun. 1975.
    [49]N. O. Sokal, Class E RF power amplifiers. QEX Commun, Quart (2001): 9-20
    [50]K. Fotopoulou and B. W. Flynn, “Wireless Power Transfer in Loosely Coupled Links Coil Misalignment Model,” IEEE Transactions on Magnetics, vol.47, no.2, pp.416,430, Feb. 2011.
    [51]M. Soma, C. G. Douglas, and L. W. Robert, “Radio-Rrequency Coils in Implantable Devices: Misalignment Analysis and Design Procedure,” IEEE Transactions on Biomedical Engineering, vol.BME-34, no.4, pp.276,282, April. 1987.
    [52]N. O. Sokal, Class E RF power amplifiers. QEX Commun, Quart 204 (2001): 9-20

    無法下載圖示 校內:2021-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE