| 研究生: |
林茂盛 Lin, Mao-Sheng |
|---|---|
| 論文名稱: |
架構於FPGA之掃頻式阻抗分析儀暨金屬薄膜厚度估測應用 A FPGA-Based Multi-Frequency Impedance Analyzer for Metal Foil Thickness Estimation |
| 指導教授: |
戴政祺
Tai, Cheng-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 渦電流 、非破壞性檢測 、共振頻率 、金屬薄膜厚度 、多頻 、掃頻 |
| 外文關鍵詞: | eddy current, non-destructive testing, resonant frequency, multi-frequency |
| 相關次數: | 點閱:178 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文根據渦電流的原理,設計一台經濟型以FPGA為架構之掃頻式阻抗分析儀並應用於金屬薄膜厚度的量測。渦電流檢測系統需要有快速的數據運算處理能力、檢測靈敏度高的探頭、及記憶體進行資料儲存。本研究以數位邏輯電路為基礎,採用FPGA現場可程式邏輯閘陣列進行系統的硬體功能開發。搭配高速的DAC與ADC轉換模組,而構成此多頻率的掃頻系統。再運用強大的個人電腦分析能力,整合軟硬體功能,實現以FPGA為架構之掃頻式阻抗分析儀,實際檢測鋁、銅及鈦金屬薄膜的厚度來驗證此系統的可行性。在系統運作模式上,提供兩種操作模式,首先對金屬薄膜待測物使用自動掃頻的渦電流量測模式,可快速的找出適合目前的探頭線圈參數及金屬待測物特性組合的幾種特徵操作頻率。其次再啟用手動多頻模式,針對這幾個特徵頻率點進行單頻渦電流檢測分析,從中找出最佳的操作頻率。使用最佳操作頻率,可更快速且更靈敏的完成阻抗測量。由實驗證實,以本系統來快速檢測金屬待測物厚度是可行的。
According to the principle of eddy currents, an economical multi-frequency swept impedance analyzer is designed to estimate the thickness of metal foils. Eddy-current testing systems require fast data computing capability, probe with high testing sensitivity, and memory for data storage. Based on digital circuits, this system uses the FPGA development platform to develop the system functions and combines high-speed DAC and ADC conversion modules to compose the multi-frequency swept system. A powerful personal computer analysis ability is applied to implement a multi-frequency swept impedance analyzer inspection instrument. The thicknesses of aluminum, copper, and titanium metal foils are tested to verify the feasibility of this system. First, the metal foils are proceeded auto-frequency swept mode analysis within fixed frequency to find out the optimal discrimination frequency of metal foil thicknesses. Manual frequency-swept mode is then started for impedance measurement and analysis aiming at characteristic frequency. The experiment shows that this system could rapidly inspect the metal foil thicknesses.
[1] 戴政祺,「非破壞性檢測」上課講義,國立成功大學電機系。
[2] 陳永增、鄧惠源,「非破壞檢測」,全華圖書股份有限公司,2009。
[3] C. C. Tai, et al., “Modeling the surface condition of ferromagnetic metal by the swept-frequency eddy current method,” IEEE Transactions on Magnetics, vol. 38, pp. 205-210, 2002.
[4] C. C. Tai, et al., “Bolt-hole corner crack inspection using the photoinductive imaging method,” Journal of Nondestructive Evaluation, vol. 19, pp. 81-93, 2000.
[5] W. Yin, et al., “A multi-frequency impedance analyzing instrument for eddy current testing,” Measurement Science and Technology, 17:393–402, 2006.
[6] W. Yin, et al., “A Novel Triple-Coil Electromagnetic Sensor for Thickness Measurement Immune to Lift-Off Variations,” IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 1, 2016.
[7] T. Reyno, et al., “Surface profiling and core evaluation of aluminum honeycomb sandwich aircraft panels using multi-frequency eddy current testing,” Sensors, 14 , vol. 17, pp. 9, 2017.
[8] A. V. Egorov, et al., “Inspection of aluminum alloys by a multi-frequency eddy current method,” Defence Technology, vol. 11, pp. 99-103, 2015.
[9] A. Bernieri, et al., “Crack Depth Estimation by Using a Multi-Frequency ECT Method,” IEEE Transactions on Instrumentation and Measurement, vol. 63, pp. 544-552, 2013.
[10] J. K. S. Paw, et al. , “Encircling probe with multi-excitation frequency signal for
depth crack defect in eddy current testing,” Journal of Fundamental & Applied Sciences, vol. 10, pp. 949-964, 2018.
[11] 陳林湋,「低頻渦電流金屬厚度檢測系統研製」,國立成功大學電機工程學系碩士論文,2012。
[12] 翁新發,「基於諧振原理之渦電流檢測儀設計與應用」,國立成功大學電機工程學系碩士論文,2012。
[13] H. Wang, et al., “Noncontact Thickness Measurement of Metal Films Using Eddy-Current Sensors Immune to Distance Variation,” IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 9, pp. 2557-2564, 2015.
[14] D. E. Bray, et al., “Nondestructive evaluation : a tool for design, manufacturing, and service,” New York : McGraw-Hill, 1989.
[15] “AD9708 8-Bit, 100 MSPS+ TxDAC® D/A Converter Datasheet,” Analog Devices, Inc., 1999.
[16] “AD9280 Complete 8-Bit, 32 MSPS, 95 mW CMOS A/D Converter Datasheet,” Analog Devices, Inc.,2010.
[17] “Xilinx IP LogiCORE Discrete Fourier Transform v3.1 Product Specification, " Xilinx March 1, 2011.
[18] 劉尹雄,「脈衝式渦電流檢測系統之設計與應用」,國立成功大學電機工程學系碩士論文,1999。
[19] C. C. Tai, “Characterization of coatings on magnetic metal using the swept frequency eddy current method,” Review of Scientific Instruments, vol. 71, pp. 3161-3167, 2000.
[20] 楊弘吉,「渦電流探頭尺寸與金屬夾層瑕疵檢測信號之關係探討」,技術學刊,vol. 17,pp. 525-533 2002。
[21] H. C. Yang, et al., “Pulsed eddy-current measurement of a conducting coating on a magnetic metal plate,” Measurement Science and Technology, vol. 13, pp. 1259–1265, 2002.
[22] C. C. Tai, et al., “Modeling the surface condition of ferromagnetic metal by the swept-frequency eddy current method,” IEEE Transactions on Magnetics, vol. 38, pp. 205-210, 2002.
[23] 楊弘吉,「渦電流非破壞性檢測系統之設計及應用」,國立成功大學電機工程學系博士論文,2003。
[24] C. C. Tai, et al., “Time-Domain and Frequency-Domain Eddy Current Simulations by the Finite Element Method,” Key Engineering Materials, vol. 270-273, pp. 585-592, 2004.
[25] 王勝豐,「有限元素法分析掃頻式和脈衝式渦電流檢測」,國立成功大學電機工程學系碩士論文,2003。
[26] 潘彥霖,「光感影像法之多重物理量數值建模與分析:缺陷與渦電流探頭電磁場之檢測」,國立成功大學電機工程學系博士論文,2010。
[27] Y. L. Pan, et al., “Thickness and Conductivity Analysis of Molybdenum Thin Film in CIGS Solar Cells Using Resonant Electromagnetic Testing Method,” IEEE Transactions on Magnetics, vol. 48, pp. 347-350, 2012.
[28] A. U. Ambia, et al., “A New Method for Electric Impedance Imaging Using an Eddy Current With a Tetrapolar Circuit,” IEEE Transactions on Biomedical Engineering, vol. 56, pp. 400-406, 2009.
校內:立即公開