簡易檢索 / 詳目顯示

研究生: 陳葆真
Chen, Bao-Jhen
論文名稱: 高熵合金應用於金屬-氧化物-半導體電容器之研究
Study on the application of high-entropy alloy to metal-oxide-semiconductor capacitor
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 84
中文關鍵詞: 高熵合金金氧半電容器氧化擴散金屬功函數
外文關鍵詞: High-Entropy Alloy, MOS Capacitor, Oxidation, Diffusion, Work Function
相關次數: 點閱:57下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在探討將高熵合金材料應用於金屬-氧化物-半導體電容器金屬層之特性,利用電性與材料分析的方法研究金屬與氧化層介面氧化與擴散行為。研究的材料系統包括NbMoTaW、Nb0.15Mo0.15Ta0.35W0.35、Nb0.15Mo0.35Ta0.15W0.35、NbMoTaWRe、CrCoFeV和CrMnReFe高熵合金薄膜。NbMoTaW系列高熵合金之氧化擴散行為,以及退火溫度對NbMoTaW系列高熵合金MOS元件特性變化的影響,也做了研究與討論。
    NbMoTaW分別使用800˚C及1000˚C之氧化退火,當800˚C持溫30分鐘和120分鐘時,膜厚從原來700 nm分別增加到727 nm和782 nm,而1000˚C持溫則分別增加為785 nm與 832 nm。隨持溫時間上升,NbMoTaW的氧化逐漸趨緩,這與大部分高熵合金氧化擴散行為相同。高熵合金之緩慢擴散效應作用在整個溫度範圍下,並且在高溫下,嚴重晶格畸變效應影響降低。
    由電容-電壓特性計算之NbMoTaW、Nb0.15Mo0.35Ta0.15W0.35和NbMoTaWRe有效功函數分別為4.65±0.13 eV、4.66±0.08 eV及4.56±0.04 eV,顯示高熵合金有功函數調變的可能性。而高熵合金閘極MOS元件較一般Ti/Al閘極MOS元件,有更好的抗氧化擴散能力,使其能在450˚C真空退火1小時後,仍有穩定之電容-電壓特性曲線,並且隨真空退火溫度達600˚C時,其漏電流相較於Ti/Al閘極MOS元件小許多,這表明高熵合金作為MOS元件閘極之潛力。但在MOS元件變溫量測實驗中發現,電容特性曲線有較嚴重變形,因此有關NbMoTaW系列高熵合金的高溫擴散行為需做進一步深入研究。

    In our study, the properties of high-entropy alloy (HEA) materials apply to metal-oxide-semiconductor (MOS) capacitor is explored to study the oxidation diffusion behavior between the metal gate and the oxide layer. It expects that the excellent stability of high-entropy alloys can improve the current breakdown of power semiconductor devices.

    The oxidation annealing experiment of NbMoTaW is performed at 800˚C and 1000˚C respectively. It shows that as the holding time increases, the oxidation of NbMoTaW gradually slows down, which indicates that the high-entropy alloy has excellent resistance to oxidation diffusion. And HEA/SiO2/p-type silicon substrate multilayers MOS capacitors are also made to measure the capacitance-voltage characteristics, calculating the work function of HEA and the equivalent oxide thickness change.

    The HEA/SiO2/p-type silicon substrate multilayers MOS capacitors are prepared by sputtering. According to our results, the oxidation diffusion behavior of high-entropy alloys is dominated by sluggish diffusion effects, and it shows that the effects of severe lattice-distortion are reduced at high temperatures. The effective work functions of NbMoTaW, Nb0.15Mo0.35Ta0.15W0.35 and NbMoTaWRe extracts from capacitance-voltage characteristics are 4.65±0.13 eV, 4.66±0.08 eV and 4.56±0.04 eV, respectively, which shows that HEA has the possibility of work function modulation. Compared with ordinary Ti/Al gate MOS devices, high-entropy alloy gate MOS devices have better oxidation diffusion resistance and smaller leakage current, which shows the potential of HEA as MOS device gate. However, in the variable temperature measurement experiment of MOS device, it shows that the capacitance characteristic curve is shifted. Therefore, the high temperature diffusion behavior of the NbMoTaW series of HEA is needed to be further studied.

    摘要 I Extended Abstract II 誌謝 XIII 目錄 XIV 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 論文架構 2 第二章 文獻回顧與理論基礎 4 2-1 高熵合金材料 4 2-1-1 高熵效應(High-entropy effect) 4 2-1-2 嚴重晶格畸變效應(Severe lattice-distortion effect) 6 2-1-3 緩慢擴散效應(Sluggish diffusion effect) 7 2-1-4 雞尾酒效應(Cocktail effect) 8 2-2 高熵合金的氧化行為 9 2-3 MOS基礎簡介 12 2-3-1 MOS結構理論基礎 12 2-3-2 MOS結構的缺陷型態及其影響[36] 18 2-3-3 缺陷對平帶電壓造成的影響 20 2-3-4 電容器的理論計算[34] 22 2-4 漏電流傳輸機制[35] 25 2-4-1 直接穿隧 (direct tunneling) 25 2-4-2 傅勒諾得翰穿隧 (FowlerNordheim tunneling) 27 2-4-3 蕭特基發射 (Schottky emission) 29 2-4-4 普爾法蘭克發射 (PooleFrenkel emission) 31 第三章 實驗方法 33 3-1 MOS電容器製作 33 3-1-1 矽基板之準備 36 3-1-2 矽基板表面清洗 36 3-1-3 氧化層製備流程 38 3-1-4 背電極後退火及電極製備 38 3-1-5 元件真空熱處理製程 40 3-2 NbMoTaW高熵合金之氧化擴散實驗 40 3-3 點電極金屬材料與元件特性之量測分析 41 3-3-1 掃描式電子顯微鏡(SEM) 41 3-3-2 X光繞射分析儀(XRD) 42 3-3-3 四點探針電性量測 43 3-3-4 I-V及C-V特性量測 45 3-3-5 二次離子質譜儀(SIMS)縱深分析 45 第四章 結果與討論 46 4-1 高熵合金材料特性分析 46 4-1-1 高熵合金電特性量測 46 4-1-2 高熵合金結晶度分析 49 4-1-3 高熵合金薄膜表面分析 54 4-1-4 高熵合金之氧化擴散行為 58 4-2 高熵合金之MOS元件特性 65 4-2-1 高熵合金之功函數計算 65 4-2-2 熱處理對MOS電容器之介面特性影響 67 4-3 高熵合金之MOS元件變溫量測 72 4-4 高熵合金之MOS元件之SIMS縱深分析 74 第五章 結論與未來規劃 79 5-1 結論 79 5-2 未來規劃與發展 80 參考文獻 81 表目錄 表3-1金屬上電極製備濺鍍參數 39 表3-2、NbMoTaW氧化擴散實驗參數 41   圖目錄 圖2-1 形成n元等莫耳合金的混合熵隨元素數目n的變化曲線[13] 5 圖2-2 一系列二元到七元Cu-Ni-Al-Co-Cr-Fe-Si合金鑄造狀態的X-Ray 繞射圖[13] 6 圖2-3 (a)單元素晶格(b)高熵合金固溶相晶格的示意圖[13] 7 圖2-4 Ni原子遷移過程中位能變化的示意圖[21] 8 圖2-5 (a) 800°C (b) 1400°C下的氧化過程示意圖[12] 10 圖2-6 薄膜電阻率與退火時間的關係圖[26] 10 圖2-7 電阻率,霍爾遷移率和載流子濃度與(a)剛沉積Ti含量的關係;(b)退火的TixFeCoNi(x = 0,0.5,1.0)薄膜[29] 11 圖2-8 MOS結構示意圖[32] 12 圖2-9 理想上的金氧半電容器平帶能帶圖[33] 15 圖2-10 在聚集區情況下的金氧半電容器能帶圖[33] 15 圖2-11 在空乏區情況下的金氧半電容器能帶圖[33] 16 圖2-12 在反轉區情況下的金氧半電容器能帶圖[33] 16 圖2-13 高頻及低頻下的電容電壓特性分曲線圖[34] 17 圖2-14 存在於金氧半電容器結構裡常見的缺陷[36] 19 圖2-15 固定氧化層電荷量對平帶電壓的影響[34] 21 圖2-16 介面陷阱電荷對電容電壓特性曲線的影響[35] 21 圖2-17 金氧半電容器能帶圖[34] 24 圖2-18 直接穿隧漏電流機制示意圖[35] 26 圖2-19 F-N穿隧機制示意圖[35] 28 圖2-20 蕭特基發射漏電流機制圖[37] 30 圖2-21 Poole-Frenkel發射漏電流機制圖[37] 32 圖3-1 實驗流程圖 34 圖3-2 MOS元件結構示意圖 35 圖3-3 簡化RCA 清洗流程圖 37 圖3-4 四點探針量測示意圖 44 圖4-1 各高熵合金組份膜厚對電阻率作圖 47 圖4-2 NbMoTaW晶粒尺寸對電阻率變化[7] 48 圖4-3 (a) NbMoTaW (b)VNbMoTaW的溫度相關電阻率(ρ(T), μΩ·cm)在SPR-KKR-CPA模擬中,有無靜態位移影響,分別為紅線及藍線[42] 48 圖4-4 (a)NbMoTaW (b)CrMnReFe (c) Nb0.15Mo0.15Ta0.35W0.35 (d)CrCoFeV (e) Nb0.15Mo0.35Ta0.15W0.35 (f) NbMoTaWRe之低掠角X光繞射圖 51 圖4-5 (a)NbMoTaW、Nb0.15Mo0.15Ta0.35W0.35、Nb0.15Mo0.35Ta0.15W0.35、(b) NbMoTaWRe之(110)繞射峰放大圖 52 圖4-6 NbMoTaW系列高熵合金之電阻率對膜厚圖 53 圖4-7 NbMoTaW系列高熵合金之晶粒尺寸對膜厚圖 53 圖4-8 (a)~(f)依序分別為CrMnReFe、CrCoFeV、NbMoTaW、Nb0.15Mo0.15Ta0.35W0.35、Nb0.15Mo0.35Ta0.15W0.35、NbMoTaWRe之SEM表面及橫截面圖 55 圖4-9、(a)、(b) NbMoTaW薄膜的表面、橫截面與 (c)、(d)文獻之NbMoTaW薄膜表面、橫截面圖[44] 56 圖4-10各組分高熵合金之表面EDS定性半定量成分分析圖 57 圖4-11 (a)~(c)分別為NbMoTaW在800˚C下真空退火前與持溫30和60分鐘之SEM表面及橫截面 59 圖4-12 NbMoTaW在800˚C下真空退火前與持溫30和60分鐘之(a) X-Ray繞射(b)晶粒尺寸 60 圖4-13 NbMoTaW在800˚C下真空退火前與持溫30和60分鐘之電阻率 61 圖4-14 NbMoTaW (a)未退火和(b)(c)在800˚C持溫30, 120分鐘及(d),(e)1000˚C持溫30, 120分鐘下氧化退火之SEM表面、橫截面圖 62 圖4-15 NbMoTaW (a)未退火和(b)(c)在800˚C持溫30, 120分鐘及(d),(e)1000˚C持溫30, 120分鐘下氧化退火之XRD圖 63 圖4-16 800˚C(黑色)及1000˚C(紅色)氧化退火之NbMoTaW膜厚與退火時間變化 63 圖4-17 NbMoTaW在未退火(黑色)、800˚C(紫色)和1000˚C(藍色)下氧化退火之電阻率 64 圖4-18 (a)位移散射(DS)對Cantor-Wu合金中殘餘電阻率ρ0的影響[45] 64 圖4-19 高熵合金薄膜金屬閘極之有效功函數對等效氧化層厚度線性擬合 66 圖4-20 高熵合金金屬閘極在室溫下之電容-電壓曲線圖 68 圖4-21 高熵合金金屬閘極在300˚C下真空退火1小時之電容-電壓曲線圖 68 圖4-22 高熵合金金屬閘極在450˚C下真空退火1小時之電容-電壓曲線圖 69 圖4-23 在不同溫度真空退火1小時下各閘極之等效氧化層厚度圖 69 圖4-24 高熵合金金屬閘極在室溫下之電流-電壓曲線圖 70 圖4-25 高熵合金金屬閘極在300˚C下真空退火1小時之電流-電壓曲線圖 70 圖4-26 高熵合金金屬閘極在450˚C下真空退火1小時之電流-電壓曲線圖 71 圖4-27 高熵合金金屬閘極在600˚C下真空退火1小時之電流-電壓曲線圖 71 圖4-28 Ti/Al金屬閘極MOS元件之變溫量測圖 72 圖4-29 Nb0.15Mo0.35Ta0.15W0.35金屬閘極MOS元件之變溫量測圖 73 圖4-30 不同金屬閘極MOS元件變溫量測之等效氧化層厚度 73 圖4-31 室溫下的Ti / Al MOS元件之SIMS縱深分析 74 圖4-32 在600˚C真空退火後Ti / Al MOS元件之SIMS縱深分析 75 圖4-33 室溫下的NbMoTaW元件之SIMS縱深分析 75 圖4-34 在600˚C真空退火後NbMoTaW MOS元件之SIMS縱深分析 76 圖4-35 室溫下的Nb0.15Mo0.35Ta0.15W0.35元件之SIMS縱深分析 76 圖4-36 在600˚C真空退火後Nb0.15Mo0.35Ta0.15W0.35 MOS元件之SIMS縱深分析 77 圖4-37 室溫下的NbMoTaWRe元件之SIMS縱深分析 77 圖4-38 在600˚C真空退火後NbMoTaWRe MOS元件之SIMS縱深分析 78

    [1] J. Chen et al., "A Review on Fundamental of High Entropy Alloys with Promising High–Temperature Properties," Journal of Alloys and Compounds, vol. 760, pp. 15-30, 2018.
    [2] O. N. Senkov et al., "Microstructure and Elevated Temperature Properties of a Refractory TaNbHfZrTi Alloy," Journal of Materials Science, vol. 47, no. 9, pp. 4062-4074, 2012.
    [3] K. H. Cheng et al., "Structural and Mechanical Properties of Multi-Element (AlCrMoTaTiZr)Nx Coatings by Reactive Magnetron Sputtering," Thin Solid Films, vol. 519, no. 10, pp. 3185-3190, 2011.
    [4] J. Chen et al., "Effect of Zr Content on Microstructure and Mechanical Properties of AlCoCrFeNi High Entropy Alloy," Materials & Design, vol. 94, pp. 39-44, 2016.
    [5] B. Gludovatz et al., "A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications," Science, vol. 345, no. 6201, pp. 1153-1158, 2014.
    [6] M. H. Chuang et al., "Microstructure and Wear Behavior of AlxCo1.5CrFeNi1.5Tiy High-Entropy Alloys," Acta Materialia, vol. 59, no. 16, pp. 6308-6317, 2011.
    [7] X. Feng et al., "Stable Nanocrystalline NbMoTaW High Entropy Alloy Thin Films with Excellent Mechanical and Electrical Properties," Materials Letters, vol. 210, pp. 84-87, 2018.
    [8] R. K. Mishra et al., "Phase Evolution and Magnetic Characteristics of TiFeNiCr and TiFeNiCrM (M = Mn, Co) High Entropy Alloys," Journal of Magnetism and Magnetic Materials, vol. 442, pp. 218-223, 2017.
    [9] N. Kumar et al., "Understanding Effect of 3.5 wt.% NaCl on The Corrosion of Al0.1CoCrFeNi High-Entropy Alloy," Journal of Nuclear Materials, vol. 495, pp. 154-163, 2017.
    [10] Y. Yao et al., "Carbothermal Shock Synthesis of High-Entropy-Alloy Nanoparticles," Science, vol. 359, no. 6383, pp. 1489-1494, 2018.
    [11] Z. Lei et al., "Enhanced Strength and Ductility in a High-Entropy Alloy via Ordered Oxygen Complexes," Nature, vol. 563, no. 7732, pp. 546-550, Nov 2018.
    [12] R. Wang et al., "Effect of Lattice Distortion on The Diffusion Behavior of High-Entropy Alloys," Journal of Alloys and Compounds, vol. 825, 2020.
    [13] J. W. Yeh, "The Development of High-Entropy Alloys," Hua Kang Journal of Engineering, vol. 27, pp. 1-18, 2011.
    [14] D. B. Miracle et al., "A Critical Review of High Entropy Alloys and Related Concepts," Acta Materialia, vol. 122, pp. 448-511, 2017.
    [15] Y. Zhang et al., "Microstructures and Properties of High-Entropy Alloys," Progress in Materials Science, vol. 61, pp. 1-93, 2014.
    [16] J. W. Yeh et al., "Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes," Advanced Engineering Materials, vol. 6, no. 5, pp. 299-303, 2004.
    [17] M. H. Tsai et al., "High-Entropy Alloys: A Critical Review," Materials Research Letters, vol. 2, no. 3, pp. 107-123, 2014.
    [18] D. B. Miracle, "Critical Assessment 14: High Entropy Alloys and Their Development as Structural Materials," Materials Science and Technology, vol. 31, no. 10, pp. 1142-1147, 2015.
    [19] D. Miracle et al., "Exploration and Development of High Entropy Alloys for Structural Applications," Entropy, vol. 16, no. 1, pp. 494-525, 2014.
    [20] R. Kozak et al., "Single-Phase High-Entropy Alloys – An Overview," Zeitschrift für Kristallographie - Crystalline Materials, vol. 230, no. 1, 2015.
    [21] K. Y. Tsai et al., "Sluggish Diffusion in Co–Cr–Fe–Mn–Ni High-Entropy Alloys," Acta Materialia, vol. 61, no. 13, pp. 4887-4897, 2013.
    [22] S. Ranganathan, "Alloyed Pleasures Multimetallic Cocktails," Current Science, vol. 85, 2003.
    [23] N. Y. Yurchenko et al., "Effect of Al Content on Structure and Mechanical Properties of The AlxCrNbTiVZr (x=0; 0.25; 0.5; 1) High-Entropy Alloys," Materials Characterization, vol. 121, pp. 125-134, 2016.
    [24] T. M. Butler et al., "High Temperature Oxidation Behaviors of Equimolar NbTiZrV and NbTiZrCr Refractory Complex Concentrated Alloys (RCCAs)," Journal of Alloys and Compounds, vol. 729, pp. 1004-1019, 2017.
    [25] S. Sheikh et al., "Accelerated Oxidation in Ductile Refractory High-Entropy Alloys," Intermetallics, vol. 97, pp. 58-66, 2018.
    [26] C. H. Tsau et al., "The Microstructures and Electrical Resistivity of (Al, Cr, Ti)FeCoNiOxHigh-Entropy Alloy Oxide Thin Films," Advances in Materials Science and Engineering, vol. 2015, pp. 1-6, 2015.
    [27] C. H. Tsau et al., "The Low Electrical Resistivity of The High-entropy Alloy Oxide Thin Films," Procedia Engineering, vol. 36, pp. 246-252, 2012.
    [28] Y. C. Yang et al., "TiFeCoNi Oxide Thin Film – A New Composition with Extremely Low Electrical Resistivity at Room Temperature," Scripta Materialia, vol. 64, no. 2, pp. 173-176, 2011.
    [29] Y. C. Yang et al., "Low-Resistivity Oxides in TixFeCoNi Thin Films after Vacuum Annealing," Surface Engineering, vol. 34, no. 9, pp. 667-673, 2017.
    [30] Y. C. Yang et al., "Influence of Ti Content on the Partial Oxidation of TixFeCoNi Thin Films in Vacuum Annealing," Materials (Basel), vol. 10, no. 10, Sep 27 2017.
    [31] W. D. Ryden et al., "Electrical Transport Properties of IrO2and RuO2," Physical Review B, vol. 1, no. 4, pp. 1494-1500, 1970.
    [32] 徐丞伯(2009)。以矽酸鉿之相分離特性作為金氧半結構氧化層之光響應研究。國立成功大學 電機工程學系碩博士班碩士論文,台南市。取自https://hdl.handle.net/11296/d55u5u
    [33] B. El-Kareh, "Silicon Devices and Process Integration: Deep Submicron and Nano-Scale Technologies," Springer, 2009.
    [34] D. A. Neamen, "Semiconductor Physics and Devices : Basic Principles / Donald A. Neamen. 4th ed," McGraw-Hill Education, 2011.
    [35] D. K. Schroder, "Semiconductor Material and Device Characterization," Wiley, 2015.
    [36] S. M. Sze, "Semiconductor.Devices Physics.Technology Sze.2ndEd," Wiley, 2002.
    [37] C. K. Maiti et al., "Hafnium Oxide Gate Dielectric for Strained-Si1−xGex," Solid-State Electronics, vol. 47, no. 11, pp. 1995-2000, 2003.
    [38] N. A. Chowdhury et al., "Charge Trapping at Deep States in Hf–Silicate Based High-κ Gate Dielectrics," Journal of The Electrochemical Society, vol. 154, no. 2, 2007.
    [39] 黃韻如(2013)。利用濕式氧化法製備氧化矽薄膜應用於矽。國立中央大學材料科學與工程研究所碩士論文,桃園市。取自https://hdl.handle.net/11296/uje3g2
    [40] X. B. Feng et al., "Size Effects on The Mechanical Properties of Nanocrystalline NbMoTaW Refractory High Entropy Alloy Thin Films," International Journal of Plasticity, vol. 95, pp. 264-277, 2017.
    [41] H. Kim et al., "Mechanical and Electrical Properties of NbMoTaW Refractory High-Entropy Alloy Thin Films," International Journal of Refractory Metals and Hard Materials, vol. 80, pp. 286-291, 2019.
    [42] S. Mu et al., "Influence of Local Lattice Distortions on Electrical Transport of Refractory High Entropy Alloys," Scripta Materialia, vol. 170, pp. 189-194, 2019.
    [43] A. Roh et al., "NbMoTaW Refractory High Entropy Alloy Composites Strengthened by in-situ Metal-Non-Metal Compounds," Journal of Alloys and Compounds, vol. 822, 2020.
    [44] Y. Zou et al., "Ultrastrong Ductile and Stable High-Entropy Alloys at Small Scales," Nat Commun, vol. 6, p. 7748, Jul 10 2015.
    [45] S. Mu et al., "Uncovering Electron Scattering Mechanisms in NiFeCoCrMn Derived Concentrated Solid Solution and High Entropy Alloys," npj Computational Materials, vol. 5, no. 1, 2019.
    [46] M. Ťapajna et al., "Precise Determination of Metal Effective Work Function and Fixed Oxide Charge in MOS Capacitors with High-K Dielectric," Materials Science in Semiconductor Processing, vol. 9, no. 6, pp. 969-974, 2006.
    [47] Y. K. J. Chrzanowski et al., "Application of The Work Function to Study The Percentage Composition of Aluminum Alloys," Scientific Journals of The Maritime University of Szczecin: Zeszyty Naukowe Akademii Morskiej w Szczecinie, 2014, pp. 27-31.
    [48] X. Klemenschits et al., "Modeling of Gate Stack Patterning for Advanced Technology Nodes: A Review," Micromachines (Basel), vol. 9, no. 12, Nov 29 2018.
    [49] J.-Y. Park et al., "Curing of Aged Gate Dielectric by The Self-Heating Effect in MOSFETs," IEEE Transactions on Electron Devices, vol. 67, no. 3, pp. 777-788, 2020.
    [50] G. Liu et al., "Recent Advances and Trend of HEV/EV-Oriented Power Semiconductors – An Overview," IET Power Electronics, vol. 13, no. 3, pp. 394-404, 2020.
    [51] J. Wang et al., "Review And Analysis of SiC MOSFETs’ Ruggedness and Reliability," IET Power Electronics, vol. 13, no. 3, pp. 445-455, 2020.

    無法下載圖示 校內:2025-07-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE