| 研究生: |
何秋燕 He, Chiu-Yen |
|---|---|
| 論文名稱: |
應用證據權重法評估土石流發生潛勢之研究-以高屏溪流域為例 Application of the Weight of Evidence Approach on Debris Flow Occurrence - A Case Study in the Gaoping River Basin |
| 指導教授: |
詹錢登
Jan, Chyan-Deng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 土石流潛勢溪流 、證據權重法 、貝氏定理 、地文因子 、降雨驅動指標 |
| 外文關鍵詞: | Debris flow prone stream, Weight of evidence, Bayesian probability model, topographic factors, RTI |
| 相關次數: | 點閱:128 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
土石流是指豐富的鬆散土體與水混合的高濃度含砂流體,在重力的作用之下,沿著坡面或溪溝,由高處往低處流動的自然現象,因其發生突然、流動快速、衝擊力強及破壞性大,往往造成人民生命財產損害,故有必要對土石流事件的發生與否進行研究。然而影響土石流發生與否的因子很多,如何利用一些地文及水文因子(如降雨或地表逕流)來提高判別土石流發生潛勢,是當前土石流防災的重要課提。本研究採用證據權重法來進行土石流發生潛勢的分析,此方法建立在貝式定理及勝算比的基礎上,利用現有的土石流資訊為基礎(驗前機率),結合土石流發生與影響因子之間的關聯性,計算出每個因子對土石流發生的影響權重值(驗後機率),將權重值以線性疊加方式建立土石流的潛勢指標,用以反映溪流發生土石流的潛勢高低。本研究以高屏溪流域的119條土石流潛勢溪流為研究範圍,以溪流長度、集水區面積、平均高程、地貌指標、形狀係數、集水區平均坡度、溪流平均坡度、標準化植生差異指標、崩塌率、曲率、碎形維度及岩性等12個地文因子,以降雨驅動指標(RTI)作為降雨因子,分別建立不含降雨因子的土石流發生地文潛勢指標(TSI),及建立含降雨因子的土石流發生降雨地文潛勢指標。最後以八個颱風豪雨事件為案例,分析土石流發生情形,結果顯示將降雨因子納入考量的潛勢指標(RTSI),在土石流發生潛勢上有較好的評估效果。本研究的研究成果可提供未來土石流事件在防災和減災時的參考。
Debris flow is a sediment-laden flow composed of loose sediment and water, which is delivered in the stream channel via gravity. This burst-geomorphic erosion process can be characterized as fast movement, having serious destruction to constructions and buildings that could be threaten to people’s life and properties. Hence, investigation about the occurrence of debris flows controlled by topographic and hydrological factors (e.g., rainfall and runoff) is an important issue for disaster prevention and mitigation. In this study, the weight of evidence method based on the Bayesian probability model, was applied to evaluate debris flow susceptibility in the Gaoping River basin that suffered 40 debris flow events during the period from 2005 to 2012. Based on this method, we can use current information of debris flow triggering (priori probability) with the controlling factors to estimate the influential weighting for each controlling factor (posterior probability). Here we considered the 12 topographic factors that includes river length, watershed area, elevation, topographic index, form factor, terrain and river slopes, normalized differential vegetation index (NDVI), percentage of landslide area, curvature, fractal dimension and lithology and one hydrological factor that is rainfall triggering index (RTI) to establish two susceptibility indices, i.e., the summation of weighting of each factor, which contain a hydrological factor (denoted by RTSI) or not (denoted by TSI). Results show that RTSI has the higher area of success rate curves and hence is more suitable for debris flow susceptibility mapping.
1.任庭暘(2013),「大規模崩塌的潛感分析:以高屏溪流域為例」,國立成功大學地球科學研究所碩士論文。
2.李明熹(2006),「土石流發生降雨警戒分析及其應用」,國立成功大學水利及海洋工程研究所博士論文。
3.汪哲誼(2010),「證據權重法在土石流危險度評估中的應用-以大漢溪流域為例」,國立成功大學地球科學研究所碩士論文。
4.陳盈赬(2007),「曾文水庫集水區之地形幾何特性與山崩分佈關係之研究」,國立成功大學資源工程學系碩士論文。
5.黃怡靜(2007),「台灣本島地質分區之地形碎形特性研究」,國立成功大學資源工程學系碩士論文。
6.黃婷卉(2002),「土石流發生降雨特性之研究」,國立成功大學水利及海洋工程研究所碩士論文。
7.葉寶安(1994),台灣北部大屯火山地形之碎形幾何特性及其地質意義,國立中央大學應用地質所碩士論文。
8.詹錢登(2000),「土石流概論」,科技圖書股份有限公司。
9.詹錢登、李明熹(2004),「土石流發生降雨警戒模式」,中華水土保持學報,35(3):275-285。
10.謝文棟(2011),「證據權重法與模糊邏輯在山崩潛感分析之研究與比較:以荖濃溪為例」,國立成功大學地球科學研究所碩士論文。
11.謝正倫、江志浩、陳禮仁(1992),「花東兩縣土石流現場調查與分析」,中華水土保持學報,第二十三卷,第二期,第109-122頁。
12.羅昱婷(2010),證據權重法運用於預測崩塌地潛勢之研究--以大漢溪集水區為例,國立成功大學地球科學研究所碩士論文。
13.土石流防災資訊網,http://246.swcb.gov.tw/
14.土石流防災資訊網,
http://246.swcb.gov.tw/debrisClassInfo/typhoon/typhoon1.aspx
15.中央氣象局,颱風資料庫,
http://rdc28.cwb.gov.tw/TDB/ntdb/pageControl/typhoon?year=2009&num=200908&name=MORAKOT&from_warning=true
16.水土保持局網站,
http://www.swcb.gov.tw/form/index-.asp?m=&m1=32&m2=236&gp=689&id=1332
17.維基百科,貝氏定理,
https://zh.wikipedia.org/wiki/%E8%B4%9D%E5%8F%B6%E6%96%AF%E5%AE%9A%E7%90%86
18.維基百科,證據權重法,
https://zh.wikipedia.org/wiki/%E5%88%86%E5%BD%A2
19.Adnan Ozdemira, Tolga Alturalb, (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Volume 64, 5 March 2013, 180–197.
20.Agterberg, F.P., (1992). Combining indicator patterns in weights of evidence modeling for resource evaluation. Natural Resources Research 1, 39–50.
21.Bonham-Carter, G.F., Agterberg, F.P., Wright, D.F., (1988). Integration of geological datasets for gold exploration in Nova-Scotia. Photogrammetric Engineering and Remote Sensing 54, 1585–1592.
22.Campbell, R.H., (1975). Soil slip, debris flow, and rainstorms in the Santa Monica Mountain and Vicinity, Southern California. U.S.Geological Survey Professional Paper 851.
23.Carranza, E.J.M., Hale, M., (2002). Spatial association of mineral occurrences and curvilinear geological features. Mathematical Geology 34, 203–221.
24.Cheng, Q., (2004). Application of weights of evidence method for assessment of lowing wells in the Greater Toronto area, Canada. Natural Resource Research 13, 77–86.
25.Daneshfar, B., Benn, K., (2002). Spatial relationships between natural seismicity and faults, southeastern Ontario and north-central New York State. Tectonophysics 353, 31–44.
26.Deering D.W., (1978). Rangeland reflectance characteristics measured by aircraft and spacecraft sensors. Ph.D. dissertation. College Station.
27.Ellen, S.D., (1988). Description and mechanics of soil slip debris flows in the storm of January 3-5,1982, in the San Francisco Bay Region, California. U.S.Geological Survey Professional Paper 1434, 63-112.
28.Emmanuel, J., Carranza, M., Hale, M., (2000). Geologically constrained probabilistic mapping of gold potential. Baguio district, Philippines. Natural Resource Research 9, 237–253.
29.Goodacre, A.K., Bonham-Carter, G.F., Agterberg, F.P., Wright, D.F., (1993). A Statistical analysis of the spatial association of seismicity with drainage patterns and magnetic-anomalies in Western Quebec. Tectonophysics 217, 285–305.
30.Horton, R.E., (1932). Drainage B Characteristics. Transaction American Geophysics Union,Volume 13, 350-361.
31.Kemp, L.D., Bonham-Carter, G.F. and Raines, G.L., (1999). Arc-WofE: Arcview extension for weights of evidence mapping. http://www.ige.unicamp.br/wofe.
32.Lee, S., Choi, J., (2004). Landslide susceptibility mapping using GIS and the weights-ofevidence model. International Journal of Geographical Information Science 18, 789–814.
33.Liang WJ, Zhuang DF, Jiang D, Pan JJ, Ren HY (2012) Assessment of debris flow hazards using a Bayesian Network. Geomorphol-ogy 171–172(15):94–100.
34.Lusted, L.B., (1968). Introduction to Medical Decision Making. Charles C. Thomas, Springfield III, 271.
35.Mandelbrot, B.B., (1982). The fractal geometry of nature. W.H. Freeman and Company.
36.Netra R. Regmi, John R. Giardino, John D. Vitek, (2010). Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology 115 ,172–187.
37.Ning Lu, Jonathan Godt, (2008). Infinite slope stability under steady unsaturated seepage conditions. Water Resources Research, Volume 44, W11404, doi:10.1029/2008WR006976.
38.Speigelhalter, D.J., Knill-Jones, R.P., (1984). Statistical and knowledge-based approaches to clinical decision-support systems, with an application in gastroenterology. Journal of the Royal Statistical Society A 147, 35–77.
39.Steven l. Reneau & william e. Dietrich, (1987). Size and location of colluvial landslides in a steep forested landscape. IAHS Publ. no. 165, 39-48.
40.X., Chen, H., Chen, Y., You, X., Chen, J., Liu, (2016). Weights-of-evidence method based on GIS for assessing susceptibility to debris flows in Kangding County, Sichuan Province, China. Environ Earth Sci (2016) 75:70 DOI 10.1007/s12665-015-5033-z.
41.Xu C, Xu X, Dai FC, Xiao J, Tan X, Yuan R, (2012). Landslide hazard mapping using GIS and weight of evidence model in Qingshui River watershed of 2008 Wenchuan earthquake struck region. J Earth Sci 23(1):97–120.
校內:2021-08-01公開