| 研究生: |
林俊言 Lin, Jun-Yen |
|---|---|
| 論文名稱: |
混合型系統追蹤器之容錯控制:
以觀測器為基礎之數位再設計方法 Fault-Tolerant Control of Tracker for Hybrid Systems: An Observer-Based Digital Redesign Approach |
| 指導教授: |
蔡聖鴻
Tsai, S. H. Jason |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 混合系統 、輸入/狀態飽和限制 |
| 外文關鍵詞: | input/state saturation constraints, hybrid system |
| 相關次數: | 點閱:107 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文針對混合型系統有輸入/狀態飽和限制,發展輸出對參考目標的追蹤器,然後解決因致動器或內部元件部份損壞而導致性能衰退的問題,此輸出對參考目標追蹤器以觀測器為基礎的預測型數位再設計方法來設計。本論文研究包括三個方面 (i)在操作點上利用最佳線性化方法,得到一個非線性系統在任意操作點相對應的最佳線性化模型,套用以觀測器為基礎的預測型數位再設計方法,並利用附加內部補償迴路架構而改善由於輸入飽和所造成的非預期現象。(ii)串接系統同時有致動器輸入與內部狀態飽和限制時,以權重切換和內部補償迴路之架構,結合以觀測器為基礎的預測型數位再設計法則來設計追蹤器,其中權重切換係利用進化規劃法來求取最佳的系統參數設定值,以改善因上述非線性限制所造成反應遲緩現象。(iii)利用改良型卡爾曼濾波器自我調整控制器,以提高系統容錯功能,且能在部份致動器和/或系統參數發生錯誤時,做立即修正而保持整體系統應有的效能。上述基於以觀測器為基礎的數位再設計技術,針對含限制條件的混合系統所設計出之輸出對參考目標追蹤器,經由電腦模擬,証實能夠有效地實現控制目標。本論文的成果相信有助文獻上在混合系統有限制條件下的追踨器研發。
Abstract
This dissertation is dedicated to develop the output-reference tracker for the hybrid system with input/state saturation constraints and then to solve the problem of performance deterioration in the event of partial actuator or system component failures. The output-reference tracker is designed using the predicted observer-based digitally redesign approach. It includes the following three topics: (i) Using an optimal linearization approach to have the optimal linear model in the vicinity of the operating states, which closely matches the nonlinear system at operating states. The digitally redesigned predictive observer-based tracker is developed to track a desired periodic reference. Besides, an inner state compensator is added to account for the windup phenomenon. (ii) A digital redesign observer-based tracker scheme, which consists of a weighted switching strategy and an inner state compensator, is applied for the continuous-time cascaded system with actuator and state saturation. The weighted switching approach, using an evolutionary programming (EP) optimal search technique, improves the generally poor transition response caused by nonlinear constraints. (iii) A novel state-space self-tuning fault tolerant scheme using a modified Kalman filter algorithm to promote the ability of fault tolerance for cascaded system. The proposed method not only acquires the desired performance of the overall controlled closed-loop system but also actively tolerates the partial actuator and/or system component failures. The above-mentioned observer-based digital redesign technique is utilized in this dissertation to develop output-reference tracker for the hybrid system with input/state constraints. The effectiveness of the developed digital control methods are demonstrated by computer simulation. We believe the advantages of this dissertation are helpful to complete the theories and implements in literature for control of hybrid system with constraints.
REFERENCES
[1] Astrom, K. J. and Wittenmark, B., Adaptive Control, Addison-Wesley, N.Y., 1995.
[2] Bodson, M. and Groszkiewicz, J. E., “Multivariable adaptive algorithms for reconfigurable flight control,” IEEE Transactions on Control System Technology, vol. 5, no. 2, pp. 217-229, 1997.
[3] Carvajal, J. Chen, G. and Ogmen, H., “Fuzzy PID controller, design, performance evaluation, and stability analysis,” Information Sciences, vol. 123, pp. 249-270, 2000.
[4] Chen, D. and Seborg, D. G., “Multiloop PI/PID controller design based on Gershgorin bands,” IEE Proceedings Control Theory and Applications, vol. 149, pp. 68-73, 2002.
[5] Chen, G. and Ueta, T., “Yet another chaotic attractor,” International Journal of Bifurcation Chaos, vol. 9, pp. 1465-1466, 1999.
[6] Chen, T. and Francis, B. A., Optimal Sampled-Data Controlled Systems, Spring-Verlag, N.Y., 1995.
[7] Chen, Y. S., Tsai, J. S. H., Shieh, L. S. and Kung, F. C., “New conditioning dual-rate digital-redesign scheme for continuous-time system with saturating actuators,” IEEE Transactions on Circuits and System-I: Fundamental Theory and Applications, vol. 49, pp. 1860-1870, 2002.
[8] Chowdhury, F. N., “Input-output modeling of nonlinear systems with time-varying linear models,” IEEE Transactions on Automatic Control, vol. 45, pp. 1355-1358, 2000.
[9] Dedieu, H. and Ogorzalek, M. J., “Controlling chaos in Chua’s circuit via sampled inputs,” International Journal of Bifurcation Chaos, vol. 4, pp. 447-455, 1994.
[10] Dorf, R. C. and Bishop, R. H., Modern Control Systems Addison-Wesley, N.Y., 1995.
[11] Durham, W., “Constrained control allocation,” Journal of Guidance, Control, and Dynamics, vol. 16, pp. 717-725, 1993.
[12] Edwards, C. and Postlethwaite, I., “Anti-windup and bumpless-transfer method,” Automatica, vol. 34, pp. 199-210. 1998.
[13] Etkin, B., Dynamics of Atmosphere Flight, Wiley, N. Y., 1972.
[14] Fogel, D. B., Evolutionary Computation, Institute of Electrical and Electronics Engineers, Inc, 1999.
[15] Fujimoto, H., Hori, J. and Kawamura, A., “Perfect tracking control based on multi-rate feedback control with generalized sampling periods,” IEEE Transactions on Industrial Electronics, vol. 48, pp. 636-644, 2001.
[16] Fujimoto, H., Kawamura, A. and Tomizuka, M., “Generalized digital redesign method for linear feedback system based on n-delay control,” IEEE/ASME Transactions on Mechatronics, vol. 4, pp. 101-109, 1999.
[17] Fujita, M. and Shimemura, E., “Integrity against arbitrary feedback-loop failure in linear multivariable control system,” Automatica, vol. 24, pp. 765-772, 1988.
[18] Gilbert, E. G., “Controllability and observability in multivariable linear systems,” SIAM Journal on Control, vol. 1, pp. 128-151, 1963.
[19] Goodwin, G. C., Graebe, S. F. and Salgado, M. E., Control System Design, Prentice -Hall, N. J., 2001.
[20] Graham, D. and McRuer, D., “Retrospective essay on nonlinearities in aircraft fight control,” Journal of Guidance, Control, and Dynamics, vol. 14, pp. 1089-1098, 1991.
[21] Guo, S. M., Shieh, L. S., Chen, G. and Lin, C. F., “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transactions on Circuits and System-I: Fundamental Theory and Applications, vol. 47, pp. 1557-1570, 2000.
[22] Guo, S. M., Shieh, L. S., Chen, G., Lin, C. F. and Chandra, J., “State-space self-tuning control for nonlinear stochastic and chaotic hybrid system,” International Journal of Bifurcation Chaos, vol. 11, pp. 1079-1113, 2001.
[23] Hanus, R., Kinnaert, M. and Henrotte, J. L., “Conditioning technique a general anti-windup and bumpless transfer method,” Automatica, vol. 23, pp. 729-739, 1987.
[24] Hanus, R., Peng, Y. and Vrancic, D., “Anti-windup, bumpless, and conditioned transfer techniques for PID controllers,” IEEE Control Systems Magazine, vol. 16, no. 5 pp. 48-57, 1996.
[25] Ieko, T., Ochi, Y. and Kanai, K., “Digital redesign of linear state-feedback law via principle of equivalent areas,” Journal of Guidance, Control, and Dynamics, vol. 24, pp. 857-859, 2001.
[26] Khosrowjerdi, M. J., Nikoukhah, R. and Safari-shad, N., “A mixed approach to simultaneous fault detection and control,” Automatica, vol. 40, pp. 261-267, 2004.
[27] Kothare, M. V., Campo, P. J., Morari, M. and Nett, C. N., “A unified framework for the study of anti-windup designs,” Automatica, vol. 30, pp. 1869-1883, 1994.
[28] Kuo, B. C., Digital Control Systems, Holt, Rinehart and Winston, N.Y., 1980.
[29] Lewis, F. L. and Syrmos, V. L., Optimal Control 2nd ed., Wiley, N.Y., 1995.
[30] Lewis, F. L., Applied Optimal Control and Estimation: Digital Design & Implementation, Englewood Cliffs, Prentice-Hall, N.J., 1992.
[31] Lin, J. Y., Tsai, J. S. H., Shieh, L. S. and Guo, S. M. “A new conditioning dual-rate observer-based tracker for hybrid chaotic systems with saturating actuators,” International Journal of Systems Science, vol. 35, pp. 25-47, 2004.
[32] Ljung, L., System Identification Theory for the User 2nd ed., Prentice-Hall, N.J., 1999.
[33] Michalewiz, Z., Genetic Algorithm + Data Structure = Evolutionary Program, Springer-Verlag, N. Y., 1996.
[34] Moseler, O. and Isermann, R., “Application of model-based fault detection to a brushless DC motor,” IEEE Transactions on Industrial Electronics, vol. 47, no. 5, pp. 1015-1020, 2000.
[35] Mueller, G. S., “Linear model of two shaft turbo jet and its properties,” IEE Proceedings, vol. 118, pp. 813-815, 1971.
[36] Omerdic, E. and Roberts, G., “Thruster fault diagnosis and accommodation for open-frame underwater vehicles,” Control Engineering Practice, vol. 12, pp. 1575-1598, 2004.
[37] Rafee, N., Chen, T. and Malik, O. P., “A technique for optimal digital redesign of analog controllers,” IEEE Transactions on Control Systems Technology, vol. 5, pp. 89-99, 1997.
[38] Shieh, L. S., Chen, G. and Tsai, J. S. H., “Hybrid suboptimal control of multi-rate multi-loop sampled-data systems,” International Journal of System Sciences, vol. 23, pp. 839-854, 1992.
[39] Shieh, L. S., Guo, S. M., Chen, G. and Ortega, M., “Ordering chaos in Chua’s system: A sampled-data feedback and digital redesign approach” International Journal of Bifurcation Chaos, vol. 10, pp. 2221-2231, 2000.
[40] Shieh, L. S. and Tsay, Y. T., “Transformations of a class of multivariable control system to block companion forms,” IEEE Transactions on Automatic Control, vol. 27, pp. 199-203, 1982.
[41] Shieh, L. S., Wang, W. M. and Appu Panicker, M. K., “Design of PAM and PWM digital controller for cascaded analog system,” ISA Transactions, vol. 37, pp.201-213, 1998.
[42] Shieh, L. S., Xu, J. and Chen, G., “Digital redesign of the chaotic discrete system,” IEEE Transactions on Aerospace and Electronic Systems, vol. 32, pp. 1488-1499, 1996.
[43] Shieh, L. S., Zhang, J. L. and Coleman, N. P., “Optimal digital redesign of continuous-time controllers,” Computer Mathematics and Applications, vol. 22, pp. 23-25, 1991.
[44] Shieh, L. S., Zhao, X. M. and Zhang, J. L., “Locally optimal digital redesign of continuous-time system,” IEEE Transactions on Industrial Electronics, vol. 36, pp. 511-515, 1989.
[45] Soderstorm, T. and Stoica, P., System Identification, Prentice-Hall, N.J., 1989.
[46] Teixeria, M. C. M. and Zak, S. H., “Stabilizing controller design for uncertain nonlinear system using fuzzy models” IEEE Transactions on Fuzzy Systems, vol. 7 pp. 133-142, 1999.
[47] Tsai, J. S. H., Lin, J. Y., Dunn, A. C. and Shieh, L. S., “Observer-based tracker for analog systems with saturating actuators and state constraints using digital redesign and a weighted switching strategy,” Circuits, Systems, and Signal Processing, vol. 24, pp. 53-82, 2005.
[48] Ueta, T. and Chen, G., “Bifurcation analysis of Chen’s attractor,” International Journal of Bifurcation Chaos, vol. 10, pp. 1917-1931, 2000.
[49] Visinsky, M. L., Cavallaro, J. R. and Walker, I. D., “A dynamic fault tolerance framework for remote robots,” IEEE Transactions on Robotics and Automation, vol. 11, no. 4, pp. 477-490, 1995.
[50] Westen, P. and Postlethwaite, I., “Linear conditioning for systems containing saturating actuators,” Automatica, vol. 36, pp. 1347-1354, 2000.
[51] Yang, T. and Chua, L. O., “Control of chaos using sampled-data feedback control,” International Journal of Bifurcation Chaos, vol. 8, pp. 2433-2438, 1998.
[52] Yang, Y., Yang, G. H. and Soh, Y. C., “Reliable control of discrete-time systems with actuator failure,” IEE Proceedings Control Theory and Applications, vol. 147, pp. 428-432, 2000.
[53] Yen, G. and Ho, L. W., “Online multiple-model-based fault diagnosis and accommodation,” IEEE Transactions on Industrial Electronics, vol. 50, pp. 296-312, 2003.
[54] Zhang, Y., Shieh, L. S., Liu, C. R. and Guo, S. M., “Digital PID controller design for multivariable analogue system with computational input-delay,” IMA Journal of Mathematical Control and Information, vol. 21, pp. 433-456, 2004.
[55] Zhang, Y. M. and Jiang, J., “Active fault-tolerant control system against partial actuator failures,” IEE Proceedings Control Theory and Application, vol. 146, pp. 95-104, 2002.
[56] Zheng, F., Wang, Q. G. and Lee, T. H., “On the design of multivariable PID controllers via LMI approach,” Automatica, vol. 38, pp. 517-526, 2002.