簡易檢索 / 詳目顯示

研究生: 康敏泰
Kang, Min-Tai
論文名稱: 軸向磁通電機之新型定子鐵芯設計與實現
Design and Implementation of an Axial Flux Motor with a Novel Stator Core Structure
指導教授: 蔡明祺
Tsai, Mi-Ching
黃柏維
Huang, Po-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 111
中文關鍵詞: 軸向磁通永磁電機分段式定子金屬積層製造電動載具
外文關鍵詞: Axial Flux Permanent Magnet Machine, Segmented Stator, Metal Additive Manufacturing, Electric Vehicle
相關次數: 點閱:39下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球暖化問題日益受到關注,各國近年來積極推動以潔淨能源取代傳統燃油車,以降低二氧化碳排放。其中,電動機車在亞洲都市地區擁有相當高的市占率,而為了進一步減少能源消耗,提升電機的功率密度已成為主要的技術發展方向。目前大多數電動機車採用徑向磁通永磁電機,但該類型電機受限於結構及輪胎尺寸,導致整體性能表現受限。為克服此瓶頸,軸向磁通永磁電機因具備薄型結構與高功率密度等潛力逐漸受到關注。然而,此類電機尚未廣泛應用的主要原因在於其定子鐵芯製造過程複雜且成本較高,使得初期驗證門檻較高,進而影響市場化過程。
    本研究針對上述挑戰,提出一種新型定子設計方法,利用金屬積層製造技術結合矽鋼片技術製作分段式定子鐵芯。該設計不僅可快速製作原型樣品,亦保留定子靴部結構,有效擴大磁通通過的面積,進而提升氣隙磁通的利用率與整體電機性能。最終透過實體樣機製作與測試驗證,證實本設計具備可行性與應用潛力。

    With growing concerns about global warming, many countries are actively promoting clean-energy vehicles to replace those powered by traditional fossil fuels, aiming to reduce carbon dioxide emissions. In urban areas across Asia, electric scooters have emerged as a dominant segment in this transition. To further reduce energy consumption, increasing the power density of electric motors has become a key focus of technological advancement. Most electric scooters currently employ radial flux permanent magnet (RFPM) machines, whose performance is often limited by structural constraints and tire dimensions. To address these challenges, axial flux permanent magnet (AFPM) machines have garnered increasing attention for their compact form and high power density potential. However, their broader adoption has been hindered by the complexity and high cost of stator core manufacturing, which slows early-stage prototyping and delays commercialization. This study proposes a novel stator design that integrates metal additive manufacturing with silicon steel lamination to produce a segmented stator core. This approach enables rapid prototyping while preserving the stator tooth geometry, effectively expanding the flux passage area, improving air-gap flux utilization, and enhancing overall motor performance. The feasibility and advantages of the proposed design are validated through the fabrication and testing of a physical prototype.

    中文摘要 I Abstract II 誌謝 X 目錄 XII 表目錄 XV 圖目綠 XVI 符號表 XX 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 4 1.3 研究目的 9 1.4 論文架構 11 第二章 軸向磁通永磁電機種類與結構 13 2.1 軸向磁通電機運作原理 13 2.1.1 磁路走勢 13 2.1.2 槽數與極數 14 2.1.3 軸向磁通電機扭矩與扭矩常數 16 2.1.4 軸向與徑向磁通電機扭矩的比較 18 2.1.5 反電動勢常數 19 2.2 定子製造工藝 20 2.2.1 疊片式定子(Lamination Type) 20 2.2.2 捲繞式定子(Wound Core Type) 22 2.2.3 插件式定子(Plug-in Type) 23 2.3 定子鐵芯靴部設計 25 2.4 無軛鐵分段式定子材料 26 2.4.1 積層製造技術 (Additive Manufacture) 27 2.4.2 軟磁複合材料(Soft Magnetic Composite, SMC) 28 2.4.3 非晶質磁性材料(Amorphous Magnetic Materials, AMM) 30 第三章 軸向磁通永磁電機設計 32 3.1 負載分析 33 3.1.1 設計限制條件 39 3.2 槽數與極數 39 3.3 尺寸設計 40 3.4 定子構型設計與材料選用 43 3.5 電裝載與磁裝載 45 3.5.1 電裝載 45 3.5.2 繞線設計 46 3.5.3 磁裝載 49 第四章 軸向磁通永磁電機幾何優化與電磁場分析 52 4.1 靴部幾何設計與分析 52 4.2 磁鐵幾何設計與分析 55 4.3 電磁場特性 56 4.3.1 無載特性 56 4.3.2 負載特性 60 第五章 實作與量測結果分析 65 5.1 實驗平台規劃 65 5.1.1 定子鐵芯製造 65 5.1.2 電機結構 68 5.1.3 測試平台 70 5.2 模擬與量測結果分析 72 5.2.1 無載特性量測 72 5.2.2 負載特性量測 74 第六章 結論與未來展望 76 6.1 結論 76 6.2 未來展望 76 參考文獻 78

    [1] 曾郁茜,全球電動機車市場發展趨勢分析,機械工業雜誌,2024年1月1日。
    [2] 2023年中國兩輪電動車產業白皮書, iResearch , 2023年3月。
    [3] Webber,Gogoro VIVA輕快無壓力體驗, SUPERMOTO8,2019年10月03日,https://www.supermoto8.com/articles/5090。
    [4] Gogoro的馬達有比較特別嗎,泛科學,2015年10月18日,https://pansci.asia/archives/87008。
    [5] Mercedes-Benz AG and YASA Ltd.,YASA Limited,https://yasa.com/yasa-mercedes-benz/.
    [6] Duane C. Hanselman, Brushless Permanent Magnet Motor Design, McGraw-Hill, 2003.
    [7] Z. Hao, Y. Ma, P. Wang, G. Luo, Y. Chen, “A Review of Axial-Flux Permanent-Magnet Motors: Topological Structures, Design, Optimization and Control Techniques,” Machines, vol. 10, Issue 12, Article No. 1178, Dec. 2022.
    [8] T. J. Woolmer and M. D. McCulloch, "Analysis of the Yokeless and Segmented Armature Machine," 2007 IEEE International Electric Machines & Drives Conference, Antalya, Turkey, 2007, pp. 704-708.
    [9] A. Allca-Pekarovic, P. J. Kollmeyer, A. Forsyth and A. Emadi, "Experimental Characterization and Modeling of a YASA P400 Axial Flux PM Traction Machine for Performance Analysis of a Chevy Bolt EV," IEEE Transactions on Industry Applications, vol. 60, no. 2, pp. 3108-3119, March-April 2024.
    [10] J. Chang, Y. Fan, J. Wu and B. Zhu, "A Yokeless and Segmented Armature Axial Flux Machine with Novel Cooling System for In-Wheel Traction Applications," IEEE Transactions on Industrial Electronics, vol. 68, no. 5, pp. 4131-4140, May 2021.
    [11] K. M. Rahman, N. R. Patel, T. G. Ward, J. M. Nagashima, F. Caricchi and F. Crescimbini, "Application of Direct-Drive Wheel Motor for Fuel Cell Electric and Hybrid Electric Vehicle Propulsion System," IEEE Transactions on Industry Applications, vol. 42, no. 5, pp. 1185-1192, Sept.-Oct. 2006.
    [12] A. Mahmoudi, S. Kahourzade, N. A. Rahim and W. P. Hew, "Design, Analysis, and Prototyping of an Axial-Flux Permanent Magnet Motor Based on Genetic Algorithm and Finite-Element Analysis," IEEE Transactions on Magnetics, vol. 49, no. 4, pp. 1479-1492, April 2013.
    [13] S. Park, H. -W. Kim, T. -H. Ji, S. -W. Jung, Y. -J. Kim and S. -Y. Jung, "Design of Axial Flux Permanent Magnet Motor for EV traction with SMC core and Nd Bonded Magnet," 2023 26th International Conference on Electrical Machines and Systems (ICEMS), Zhuhai, China, 2023, pp. 3360-3363.
    [14] H. Tiismus, A. Kallaste, T. Vaimann, A. Rassõlkin and A. Belahcen, "Technologies for Additive Manufacturing of Electrical Machines," 2019 20th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Erlagol, Russia, 2019, pp. 651-655.
    [15] D. Kowal, P. Sergeant, L. Dupre and A. Van den Bossche, "Comparison of Nonoriented and Grain-Oriented Material in an Axial Flux Permanent-Magnet Machine," IEEE Transactions on Magnetics, vol. 46, no. 2, pp. 279-285, Feb. 2010.
    [16] Z. Wang et al., "Development of an axial gap motor with amorphous metal cores," 2009 International Conference on Electrical Machines and Systems, Tokyo, Japan, 2009, pp. 1-6.
    [17] H. -J. Pyo, J. W. Jeong, J. Yu, S. G. Lee and W. -H. Kim, "Design of 3D-Printed Hybrid Axial-Flux Motor Using 3D-Printed SMC Core," IEEE Transactions on Applied Superconductivity, vol. 30, no. 4, pp. 1-4, June 2020, Art no. 5202004.
    [18] F. Marignetti, V. D. Colli and S. Carbone, "Comparison of Axial Flux PM Synchronous Machines with Different Rotor Back Cores," IEEE Transactions on Magnetics, vol. 46, no. 2, pp. 598-601, Feb. 2010.
    [19] C. Liu, G. Lei, T. Wang, Y. Guo, Y. Wang and J. Zhu, "Comparative Study of Small Electrical Machines with Soft Magnetic Composite Cores," IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1049-1060, Feb. 2017.
    [20] A. G. Jack, B. C. Mecrow, G. Nord and P. G. Dickinson, "Axial Flux Motors Using Compacted Insulated Iron Powder and Laminations - Design and Test Results," IEEE International Conference on Electric Machines and Drives, San Antonio, TX, USA, 2005, pp. 378-385.
    [21] H. J. Pyo, J. W. Jeong, J. Yu, S. G. Lee and W. H. Kim, "Design of 3D-Printed Hybrid Axial-Flux Motor Using 3D-Printed SMC Core," IEEE Transactions on Applied Superconductivity, vol. 30, no. 4, Art no. 5202004, June 2020.
    [22] H. Tiismus, A. Kallaste, T. Vaimann, A. Rassõlkin and A. Belahcen, "Additive Manufacturing of Prototype Axial Flux Switched Reluctance Electrical Machine," 2021 28th International Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED), Moscow, Russia, 2021, pp. 1-4.
    [23] N. Gadiyar, A. D. Goodall, I. Todd and E. L. Severson, "Characterization of an Axial Flux Machine with an Additively Manufactured Stator," IEEE Transactions on Energy Conversion, vol. 38, no. 4, pp. 2717-2729, Dec. 2023.
    [24] T. Husain, B. Tekgun, Y. Sozer and M. Hamdan, "Comparison of axial flux machine performance with different rotor and stator configurations," 2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, USA, 2017, pp. 1-8.
    [25] Jacek F. Gieras, Rong-Jie Wang and Maarten J. Kamper, Axial Flux Permanent Magnet Brushless machines. Kluwer Academic Publishers, 2004.
    [26] 李泓毅,「以繞線函數分析馬達槽極配」,馬達電子報,第933期,成大馬達科技研究中心,2021年。
    [27] N. Gadiyar, J. V. Verdeghem and E. L. Severson, "Recent Advances in Analysis and Design of Axial Flux Permanent Magnet Electric Machines," 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 2021, pp. 3745-3752.
    [28] Z. Cao, A. Mahmoudi, S. Kahourzade, W. L. Soong and J. R. Summers, "A Comparative Study of Axial-Flux versus Radial-Flux Induction Machines," 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 2020, pp. 1-6.
    [29] Axial Flux Motor - Stator Cores, Precision Pressing Manufacturers, http://www.ppm.co.in/axial-flux-motor-lamination-core.
    [30] 洪艾,「現行軸向馬達定子鐵心製造方法概述」,馬達中心電子報,國立成功大學馬達科技研究中心,第1028期,2022年。
    [31] S. Sun, F. Jiang, T. Li, B. Xu and K. Yang, "Comparison of A Multi-Stage Axial Flux Permanent Magnet Machine with Different Stator Core Materials," IEEE Transactions on Applied Superconductivity, vol. 30, no. 4, Art no. 5205906, June 2020.
    [32] 黃郁璇,「用於輕型電動載具之雙邊型軸向磁通永磁同步馬達設計」,碩士論文,國立台北科技大學,2013年。
    [33] T. Takahashi, M. Takemoto, S. Ogasawara, W. Hino and K. Takezaki, "Size and weight reduction of an in-wheel axial-gap motor using ferrite permanent magnets for electric city commuters," 2015 18th International Conference on Electrical Machines and Systems (ICEMS), Pattaya, Thailand, 2015, pp. 2045-2051.
    [34] Peng Wu, and Jun Wang and Xiangyu Wang, “A critical review of the use of 3-D printing in the construction industry,” Automation in Construction, vol. 68, pp. 21-31, Aug. 2016.
    [35] 江家銘,「電動輔助自行車中置馬達最佳化設計」,碩士論文,國立臺灣大學機械工程學系,2014。
    [36] Q. A. Shah Syed, V. Solovieva and I. Hahn, "Magnetization Characteristics and Loss Measurements of the Axial Flux Permanent Magnet Motor's Stator," 2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego, CA, USA, 2019, pp. 1061-1066.
    [37] T. Fan, Q. Li and X. Wen, "Development of a High Power Density Motor Made of Amorphous Alloy Cores," IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 4510-4518, Sept. 2014.
    [38] 中華民國道路交通安全規則,全國法規資料庫, 民國 113 年 09 月 30 日
    [39] 簡伸翰,「應用於電動滑板車之輪轂式游標永磁馬達設計與實現」,碩士論文,國立成功大學電機工程學系,2021。
    [40] 杜昀澤,「新型髮夾型扁線繞組之端部連接架構應用於馬達設計」,碩士論文,國立成功大學電機工程學系,2024。
    [41] A. Mahmoudi, N. A. Rahim, and H. W. Ping, ‘‘Axial-flux permanent -magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis,’’ Prog. Electromagnetics. Res., vol. 122, pp. 467–496, 2012.
    [42] A. Mahmoudi, S. Kahourzade, N. A. Rahim and W. P. Hew, "Design, Analysis, and Prototyping of an Axial-Flux Permanent Magnet Motor Based on Genetic Algorithm and Finite-Element Analysis," IEEE Transactions on Magnetics, vol. 49, no. 4, pp. 1479-1492, April 2013.
    [43] N. Aliyu, G. Atkinson and N. Stannard, "Concentrated winding permanent magnet axial flux motor with soft magnetic composite core for domestic application," 2017 IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON), Owerri, Nigeria, 2017, pp. 1156-1159.
    [44] N35UH,Arnold Magnetic Technologies,https://www.arnoldmagnetics.com/wp-content/uploads/2017/11/N35UH-151021.pdf
    [45] O. Taqavi, S. Ehsan Abdollahi and B. Aslani, "Investigations of Magnet Shape Impacts on Coreless Axial-Flux PM Machine Performances," 2021 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Tabriz, Iran, 2021, pp. 1-5.
    [46] J. Wanjiku, M. A. Khan, P. S. Barendse and P. Pillay, "Influence of Slot Openings and Tooth Profile on Cogging Torque in Axial-Flux PM Machines," IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7578-7589, Dec. 2015.
    [47] J. Kang, H. Kim, D. -H. Jung, C. -S. Jin, S. -H. Won and J. Lee, "A Study on Axial Type Servo Motor for Current Density and Torque Ripple Reduction through Magnet Shape," 2022 25th International Conference on Electrical Machines and Systems (ICEMS), Chiang Mai, Thailand, 2022, pp. 1-4.
    [48] M. Aydin, Ronghai Qu and T. A. Lipo, "Cogging torque minimization technique for multiple-rotor, axial-flux, surface-mounted-PM motors: alternating magnet pole-arcs in facing rotors," 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, Salt Lake City, UT, USA, 2003, vol.1, pp. 555-561.
    [49] “AMP-160,” TONGTAI MACHINE, Retrieved from https://www.tongtai.com.tw/tw/product-detail.php?id8315.

    無法下載圖示 校內:2030-08-20公開
    校外:2030-08-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE