簡易檢索 / 詳目顯示

研究生: 黃東海
Huang, Dong-Hai
論文名稱: 拉伸應力與耦合式平面摻雜通道變晶型場效電晶體之研製
Investigation of InAlAs/InGaAs Metamorphic Heterostructure Field Effect Transistors with Tensile-strained and Coupled δ-doped Channels
指導教授: 許渭州
Hsu, Wei-Chou
林育賢
Lin, Yu-Shyan
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 129
中文關鍵詞: 拉伸應力高功率高頻場效電晶體
外文關鍵詞: high frequency, field-effect transistor, tensile strain, high power
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們成功的研製一系列具改良式通道的場效電晶體。藉由不同組成的通道,探討其對元件特性的影響,包括:漸變組成、壓縮應力、拉伸應力、耦合式平面摻雜通道。
    我們首先研製通道銦組成為反向漸變與對稱漸變的砷化銦鋁/砷化銦鎵高電子移動場效電晶體。相較於銦組成為反向漸變的砷化銦鎵通道,對稱漸變通道元件具有較高二維電子氣體載子濃度與較優良的閘極調變效率,因此可以表現較佳電流驅動能力與高頻特性,但反向漸變通道中衝擊游離較不明顯,具有較高崩潰電壓較適合高功率輸出,同時也因庫侖散射距離較遠和較高的通道/緩衝層能帶不連續而不易受溫度影響其特性,所以兩元件於高頻與功率的應用上互有優勢。在閘極長度為0.65 µm的元件中,對稱漸變(反向漸變)的砷化銦鋁/砷化銦鎵高電子移動場效電晶體的轉導值為330 mS/mm (314 mS/mm),高頻截止頻率為 50.0 GHz (46.0 GHz),操作在5.8 GHz與汲極-源極偏壓為2伏特時最大輸出功率分別為84.9 mW/mm (95.3 mW/mm)。
    為了使元件更能適用MMIC的應用並進一步提升元件特性改善上,我們進一步研製以變晶方式銦組成為0.53通道的平面摻雜砷化銦鋁/砷化銦鎵變晶結構高電子移動場效電晶體。由於變晶型技術的特性,我們嘗試以提高鋁含量蕭基層鋁含量至0.42的方式,以提高半導體能隙方式製作壓縮式應力通道元件,並與晶格匹配元件比較。實驗結果顯示,壓縮應力通道元件具較高能隙的蕭基層可以有效提升崩潰電壓,並因為較高的傳導帶不連續而有較高二維電子氣體濃度,具有壓縮應力通道的砷化銦鋁/砷化銦鎵變晶結構高電子移動場效電晶體具有較大的汲極電流與功率輸出,但因壓縮應力會降低通道電子移動率,故晶格匹配元件具有較高的轉導值與高頻特性。壓縮應力通道與晶格匹配通道的砷化銦鋁/砷化銦鎵變晶高電子移動場效電晶體的轉導值分別為318 mS/mm與341 mS/mm,汲極電流為452 mA/mm與366 mA/mm,高頻截止頻率為 48.0 GHz與53.5 GHz,操作在5.8 GHz與汲極-源極偏壓為3伏特時最大輸出功率分別為185.8 mW/mm與131.5 mW/mm。
    由於較窄通道能隙會有較明顯的衝擊游離的現象,但高頻所需要的高電子移動率需由高銦組成的窄能隙提供,因而造成功率的輸出與高頻特性需要取捨。為了研究及同步改善元件的高頻與功率特性,我們進一步研製通道銦組成為對稱型漸變的拉伸應力通道之平面摻雜的砷化銦鋁/砷化銦鎵變晶結構高電子移動場效電晶體,由於拉伸應力與對稱型漸變皆可有效提升載子移動率,在降低銦含量下,可得到與高銦含量通道的元件更高的載子移動率並同時改善的衝擊游離效應,不但在直流特性上可提升,在高頻與功率應用上,也可超越傳統元件。實驗結果顯示,對稱型漸變的拉伸應力通道之δ-摻雜的砷化銦鋁/砷化銦鎵變晶結構高電子移動場效電晶體的轉導值可高達404 mS/mm,最大汲極電流可到達514 mA/mm,高頻截止頻率為58.5 GHz,操作在5.8 GHz與汲極-源極偏壓為3伏特時時最大功率輸出為260.0 mW/mm。
    最後,我們針對高電子移動率場效電晶體高溫特性衰減提出改善方式-使用耦合平面摻雜變晶式場效電晶體。由於通道中央使用高銦含量的砷化銦鎵做為通道,在電子波函數耦合的效果下,仍可得到高電子移動率,且同時具有摻雜式通道電晶體的高載子濃度的優點,因此在直流與高頻表現上,轉導值可到達320 mS/mm,汲極電流可到達566 mA/mm,高頻截止頻率為45 GHz,操作在5.8 GHz時最大功率輸出為194.5 mW/mm。由於平面摻雜通道的高載子侷限能力,從室溫到420 K,轉導值與汲極電流變化量僅有+0.3%與-3.4%,非常適合於高溫使用。

    In this dissertation, we have investigated InAlAs/InGaAs heterostruture field-effect transistors (HFETs) with different InxGa1-xAs channel structures, including graded, compressively-strained, tensile-strained, and coupled δ-doped channels. Through the channel engineering, we have studied the influences on comprehensive device performances, such as drain current (IDSS0), breakdown (VBK), extrinsic transconductances (gm), output conductance (gd), cut-off frequency (fT), maximum oscillation frequency (fmax), and output power (Pout).
    First, we investigate the InP-based In0.52Al0.48As/In0.53Ga0.47As high-electron-mobility transistors (HEMTs) with inversely-graded and symmetrically-graded channels (IGC-HEMT and SGC-HEMT). As compared to IGC-HEMT, SGC-HEMT has higher 2DEG concentration and better gate modulation efficiency. Therefore, SGC-HEMT demonstrates better current driving capability and microwave characteristics. On the other hand, IGC-HEMT exhibits the relieved impact ionization and higher breakdown voltage, making IGC-HEMT more suitable for power applications. Furthermore, less Coulomb scattering in the inversely graded channel makes IGC-HEMT exhibit better thermal stability. For a 0.65 μm gate-length device, the measured gm, fT, fmax, and Pout at 5.8 GHz (biased at VDS = 2 V) are 330 mS/mm (314 mS/mm), 50.0 GHz (46.0 GHz) and 46.0 (55.0 GHz) GHz, 84.9 mW/mm (95.3 mW/mm) for SGC-HMET (IGC-HEMT), respectively.
    To meet the requirements of MMIC fabrications and to further improve device performances, we fabricate the InxAl1-xAs/In0.53Ga0.47As/InxAl1-xAs metamorphic high-electron-mobility transistor (MHEMT) with the different indium composition of the Schottky and buffer layers. The energy gap (Eg) of the Schottky and buffer layer can be increased by reducing the indium composition of from x = 0.52 in lattice-matched device to x = 0.42. Therefore, the device with compressively-strained channel (CS-MHEMT) was fabricated and compared with lattice-matched device (LM-MHEMT). Experimental results indicate that wider Eg of Schottky layer increases the breakdown voltages and 2DEG carrier concentration at the same time, leading to higher IDSS0 and Pout, but the compressive strain degrades the channel mobility. Thus LM-MHEMT exhibits superior gm, fT, and fmax to CS-MHEMT. For a 0.65 μm gate-length device, the gm, IDSS0, fT, and Pout at 5.8 GHz (biased at VDS = 3 V) for CS-MHEMT (LM-MHEMT) are 318 mS/mm (341 mS/mm), 452 mA/mm (366 mA/mm), 48.0 GHz (53.5 GHz), 185.8 mW/mm (131.5 mW/mm), respectively.
    In order to improve the microwave and power characteristics simultaneously, the MHEMT device with tensile-strained channel was fabricated (TS-MHEMT). Because both the tensile strain and symmetrically-graded structures can increase the channel mobility, higher mobility and less impact ionization than those of conventional devices can be obtained in low In-content channel. The DC, RF, and power characteristics have been improved in TS-MHEMT as compared to the conventional MHEMT. For a 0.65 μm gate-length device, gm, IDSS0, fT, and Pout at 5.8 GHz (biased at VDS = 3 V) are 404 mS/mm, 514 mA/mm, 58.5 GHz, and 260.0 mW/mm, respectively.
    Finally, we proposed metamorphic δ-doped channel heterostructure field-effect transistor (MDDFET). Because the partial wave function traveling in the high-speed undoped channel in the center of channel, high channel mobility can be achieved without sacrificing the high carrier concentration. For a 0.65 μm gate-length device, the measured gm, IDSS0, fT, and Pout at 5.8 GHz are 320 mS/mm, 566 mA/mm, 45 GHz, and 194.5 mW/mm, respectively. Furthermore, the variations of gm and ISDD0 are as low as 0.3% and -3.4% from 300 K to 420 K respectively, which can be attributed to the enhanced carrier confinement and the special electron transferring mechanism.

    Abstract Figure Captions Table Captions Chapter 1 Introduction 1 Chapter 2 Comparative Study of In0.52Al0.48As/InxGa1-xAs/InP HEMTs with Symmetrically-Graded and Inversely-Graded Channel 5 2-1 Introduction 5 2-2 Device Structures and Fabrication 6 2-3 Experimental Results and Discussion 7 2-4 Summary 11 Chapter 3 InxAl1-xAs/In0.53Ga0.47As/InxAl1-xAs MHEMTs with Lattice-Matched(x = 0.52) and Compressively-Strained(x = 0.42) Channel 14 3-1 Introduction 14 3-2 Device Structures and Fabrication 15 3-3 Experimental Results and Discussion 16 3-4 Summary 20 Chapter 4 Tensile-Strained In0.5Al0.5As/InxGa1-xAs/In0.5Al0.5As (x = 0.3-0.5-0.3) MHEMT 22 4-1 Introduction 22 4-2 Device Structures and Fabrication 23 4-3 Tensile Strain 24 4-4 Experimental Results and Discussion 26 4-5 Summary 32 Chapter 5 Metamorphic HEMT Metamorphic Heterostructure Field-Effect Transistor with Coupled δ-doped Channel 34 5-1 Introduction 34 5-2 Device Structures and Fabrication 36 5-3 Experimental Results and Discussion 36 5-4 Temperature-Dependent Characteristics 40 5-5 Summary 45 Chapter 6 Conclusion and Prospect 48 6-1 Conclusions 48 6-2 Prospect 50 References Figures Publication list

    [1] C. Nguyen, and M. Micovic, “The state-of-the-art of GaAs and InP power devices and amplifiers”, IEEE Trans. Electron. Devices, vol. 48, p. 472, 2001.

    [2] J. W. Lim, H. K. Ahn, H. H. Ji, W. J. Chang, J. K. Mun, and H. Kim “Fabrication and characteristics of 0.12 µm AlGaAs/InGaAs/GaAs pseudomorphic HEMT using a silicon nitride assisted process”, Semicond. Sci. Technol., vol. 19, p.1416, 2004.

    [3] K. Ouchi, T. Mishima, M. Kudo, and H. Ohta, “Gas-Source Molecular Beam Epitaxy Growth of Metamorphic InP/In0.5Al0.5As/In0.5Ga0.5As/InAsP High-Electron-Mobility Structures on GaAs Substrates”, Jpn. J. Appl. Phys., vol. 41, p. 1004, 2004.

    [4] L. D. Nguyen, A.S. Brown, M. A. Thompson, and L. M. Jelloian, “50 nm self-aligned gate pseudomorphic AlInAs/GaInAs high electron mobility transistors”, IEEE Trans. Electron. Devices, vol. 39, p. 2007, 1992.

    [5] H. R. Chen, W. T. Chen, M. K. Hsu, S. W. Tan, and W. S. Lour, “Fringing effects of V-shape gate metal on GaAs/InGaP/InGaAs doped-channel field-effect transistors”, Semicond. Sci. Technol., vol. 20, p. 932, 2005.

    [6] W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei,K. H. Yu, K. W. Lin, C. C. Cheng, W. S. Lour, and W. C. Liu, “High-performance double delta-doped sheets Ga0.51In0.49P/In0.15Ga0.85As/Ga0.51In0.49P pseudomorphic heterostructure transistors”, Semicond. Sci. Technol., vol. 15, p. 1, 2000.

    [7] Y. J. Chen, W. C. Hsu, Y. W. Chen, Y. S. Lin, R. T. Hsu, and Y. H. Wu, “InAlAs/InGaAs doped channel heterostructure for high-linearity, high-temperature and high-breakdown operations”, Solid State Electron, vol. 49, p. 163, 2005.

    [8] Y. S. Lin, T. P. Sun, and S. S. Liu, “InP-based enhancement-mode pseudomorphic HEMT with strained In0.45Al0.55As barrier and In0.75Ga0.25As channel layers”, IEEE Electron Device Lett., vol. 18, p. 150, 1997.

    [9] H. M. Chuang, S. Y. Cheng, P. H. Lai, X. D. Liao, C. Y. Chen, C. H. Yan, R. C. Liu, and W. C. Liu, “Study of InGaP/InGaAs double doped channel heterostructure field-effect transistors (DDCHFETs)”, Semicond. Sci. Technol., vol. 19, p. 87, 2004.

    [10] Y. W. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu, and Y. J. Chen, “Characteristics of In0.52Al0.48As/InxGa1-xAs HEMT’s with various InxGa1-xAs channels,” Solid-State Electronic., vol. 48, p. 119, 2004.

    [11] W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu, and Y. H. Wu, ”A high-performance δ-doped GaAs/InxGa1-xAs pseudomorphic high electron mobility transistor utilizing a graded InxGa1-xAs channel “, IEEE Electron Device Lett., vol. 40, p. 1630, 1993.

    [12] Y. J. Chen, C. S. Lee, T. B. Wang, W. C. Hsu, Y. W. Chen, K. H. Su, and C. L. Wu, “Improved In0.45Al0.55As/In0.45Ga0.55As/In0.65Ga0.35As Inverse Composite Channel Metamorphic HEMT”, Jpn. J. Appl. Phys., vol. 44, p. 5903, 2005.

    [13] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, J. C. Huang, D. H. Huang, K. H. Su, Y. S. Lin, and C. L. Wu, “Characteristics of In0.425Al0.575As/InxGa1-xAs metamorphic HEMTs with pseudomorphic and Symmetrically graded channels,” IEEE Trans. Electron. Devices, vol. 52, p. 1079, 2005.

    [14] W. C. Liu, W. L. Chang, W. S. Lour, S. J. Pan, W. C. Wang, J. Y. Cheng, K. H. Yu, and S. C. Feng, “High-performance InGaP/InxGa1-xAs HEMT with an inverted delta-doped V-shaped channel structure”, IEEE Trans. Electron. Devices Lett., vol. 20,p. 548, 1999.

    [15] G. Meneghesso, A. Neviani, R. Oesterholt, M. Matloubian, T. Liu, J. J. Brown, C. Canali, and E. Zanoni, “On-state and off-state breakdown in GaInAs/InP composite-channel HEMT’s with variable GaInAs channel thickness”, IEEE Trans. Electron. Devices, vol. 46, p. 2, 1999.

    [16] W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, and S. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic HEMT”, IEEE Trans. Electron. Devices Lett., vol. 20, no. 6, pp. 274-276, 1999.

    [17] K. H. Su, W. C. Hsu, C. S. Lee, I. L. Chen, Y. J. Chen, and C.L. Wu “Comparative studies of delta-doped In0.45Al0.55As/In0.53Ga0.47As/GaAs metamorphic HEMTs with Au, Ti/Au, Ni/Au, and Pt/Au gates”, J. Electrochem. Soc., vol. 153, p. G996, 2006.

    [18] I. Lo, J. R. Lian, H. Y. Wang, M. H. Gau, J. K. Tsai, J. C. Chiang, Y. J. Li, and W. C. Hsu “Magnetotransport study on the defect levels of delta-doped In0.22Ga0.78As/GaAs quantum wells”, J. Appl. Phys., vol. 100, p. 063712, 2006.

    [19] D. H. Huang, W. C. Hsu, Y. S. Lin, J. C. Huang, and C. L. Wu “Strain-relaxed In0.1Al0.25Ga0.65As/In0.22Ga0.78As/In0.1Al0.25Ga0.65As HEMT”, J. Electrochem. Soc., vol. 153, p. G826, 2006.

    [20] D. H. Huang, W. C. Hsu, Y. S. Lin, Y. H. Wu, R. T. Hsu, J. C. Huang, and Y. K. Liao “Comparative study of In0.52Al0.48As/InxGa1-xAs/InP high-electron-mobility transistors with a symmetrically graded and an inversely graded channel”, Semicond. Sci. Technol., vol. 21, p. 781, 2006.

    [21] J. C. Huang, W. C. Hsu, C. S. Lee, D. H. Huang, and M. F. Huang, “Characteristics of delta-doped InAlAs/InGaAs/InP high electron mobility transistors with a linearly graded InxGa1-xAs channel”, Semicond. Sci. Technol., vol. 21, p. 619, 2006.

    [22] S. J. Yu, W.C. Hsu, Y. J. Chen, and C. L. Wu, “ High power and high breakdown delta-doped In0.35Al0.65As/In0.35Ga0.65As metamorphic HEMT”, Solid-State Electronic., vol. 50, p.291, 2006.

    [23] W.C. Hsu, D. H. Huang, Y. S. Lin, Y. J. Chen, J. C. Huang, and C. L. Wu, “Performance improvement in tensile-strained In0.5A10.5As/InxGa1-xAs/In0.5A10.5As metamorphic HEMT”, IEEE Trans. Electron Devices, vol. 53, p. 406, 2006.

    [24] Y. S. Lin, D. H. Huang, W. C. Hsu, T. B. Wang, R. T. Hsu, and Y. H. Wu, “n(+)-GaAs/p(+)-InAlGaP/n(+)-InAlGaP camel-gate high-electron mobility transistors”, Electrochemical and Solid State Letters, vol. 9, p. G37, 2006.

    [25] C.S. Lee, W. C. Hsu, W.L. Yang, Y.J. Chen, J.C. Huang, and H.H. Chen, “Analytic Modeling for Current-Voltage Characteristics and Drain-Induced Barrier-Lowering (DIBL) Phenomenon of the InGaP/InGaAs/GaAs PDCFET”, Journal of the Korean Physical Society , vol. 45, p. S513, 2004.

    [26] C. S. Lee, and W. C. Hsu, “Bias-Tunable Multiple-Transconductance with Improved Transport Characteristics of δ-doped In0.28Ga0.72As/GaAs/In0.24Ga0.76As/GaAs High Electron Mobility Transistor Using a Graded Superlattice Spacer”, Jpn. J. Appl. Phys., vol. 42, p. 1545, 2003.

    [27] S. J. Yeon, J. Lee, G. Seol, and K. Seo, “Gate Length Reduction Technology for Pseudomorphic In0.52Al0.48As/In0.7Ga0.3As High Electron Mobility Transistors “, Jpn. J. Appl. Phys., vol. 46, p. 2296, 2007.

    [28] T. Mimura “Development of High Electron Mobility Transistor”, Jpn. J. Appl. Phys., vol. 44, p. 8263, 2005.

    [29] D. H. Kim, S. J. Yeon, J. H. Lee, and K. S. Seo “30 nm Triple-Gate In0.7GaAs HEMTs Fabricated by Damage-Free SiO2/SiNx Sidewall Process and BCB Planarization”, Jpn. J. Appl. Phys., vol. 43, p. 1905, 2004.

    [30] Y. Yamashita, A. Endoh, M. Higashiwaki, K. Hikosaka, T. Mimura, S. Hiyamizu and T. Matsui, “High fT 50-nm-Gate InAlAs/InGaAs High Electron Mobility Transistors Lattice-Matched to InP Substrates “, Jpn. J. Appl. Phys., vol. 39, p. L838, 2000.

    [31] Ch. Köpf, H. Kosina, and S. Selberherr, “Physical models for strained and relaxed GaInAs alloys: band structure and low-field transport,” Solid-State Electronics, vol. 41, no. 8, p. 1139, 1997.

    [32] S. Babiker, A. Asenov, S. Roy, J. R. Barker, and S. P. Beaumont, “Strain engineered InxGa1-xAs channel pHEMTs on virtual substrates: a simulation study,” Computational Electronics, IWCE-6, p. 178, 1998.

    [33] G. Meneghesso, A. Mion, A. Neviani, M. Matloubian, J. Brown, M. Hafizi, T. Liu, C. Canali, M. Pavesi, M. Manfredi, and E. Zanoni, “Effects of channel quantization and temperature on off-state and on-state breakdown in composite channel and conventional InP-based HEMTs”, IEDM Tech. Dig., p. 43, 1996.

    [34] K.H. Su, W.C. Hsu, C.S. Lee, T.Y. Wu, Y.H. Wu, L. Chang, R.S. Hsiao, J.F. Chen and T.W. Chi, “A Novel Dilute Antimony Channel In0.2Ga0.8AsSb/GaAs HEMT”, IEEE Electron Device Lett., vol.28, p.96, 2007.

    [35] C.S. Lee, C.H. Chen , J.C. Huang , and K. H. Su, ”Comparative Studies on Double δ-Doped Al0.3Ga0.7As/InxGa1-xAs/GaAs Symmetrically-Graded Doped-Channel Field-Effect Transistors”, J. Electrochem. Soc., vol. 154, p. H374, 2007.

    [36] F. T. Chien, S. C. Chiol, Y. J. Chan, “Microwave power performance comparison between single and dual doped-channel design in AlGaAs/InGaAs HFETs”, IEEE Trans. Electron Devices Lett., vol. 21, p. 60, 2000.

    [37] V. Drouot, M. Gendry, C. Santinelli, X. Letartre, J. Tardy, P. Viktorovitch, G. Hollinger, M. Ambri, and M. Pitaval, “Design and growth investigations of strained InxGa1-xAs/InAlAs/InP heterostructures for high electron mobility transistor application”, IEEE Trans. Electron Devices., vol. 43, no. 9, p. 1326, 1996.

    [38] M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Th´eron, and Y. Crosnier, “InAlAs/InGaAs Metamorphic HEMT with High Current Density and High Breakdown Voltage”, IEEE Trans. Electron Devices Lett., vol.19, no. 9, p. 345, 1998.

    [39] Y. C. Lien, S. H. Chen, E. Y. Chang, C. T. Lee, L. H. Chu, C. Y. Chang, “Fabrication of 0.15-μm Γ-Shaped Gate In0.52Al0.48As/In0.6Ga0.4As Metamorphic HEMTs Using DUV Lithography and Tilt Dry-Etching Technique”, IEEE Trans. Electron Devices Lett., vol. 28, no. 2, p. 93, 2007.

    [40] Y. C. Lin, E. Y. Chang, H. Yamaguchi, Y. Hirayama, X. Y. Chang, and C. Y. Chang, “Device Linearity Comparison of Uniformly Doped and δ-Doped In0.52Al0.48As/In0.6Ga0.4As Metamorphic HEMTs”, IEEE Trans. Electron Devices Lett., vol. 27, no. 7, p. 535, 2006.

    [41] T. Akazaki, T. Enoki, K. Arai, Y. Ishii, ”Improving the characteristics of an InAlAs/InGaAs inverted HEMT by inserting an InAs layer into the InGaAs channel”, Solid-State Electronic., vol. 38, p. 997, 1995.

    [42] M. Malmkvist, A. Mellberg, N. Rorsman, H. Zirath, J. Grahn,” Integration of components in a 50-nm pseudomorphic In0.65Ga0.35As–In0.40Al0.60As–InP HEMT MMIC technology “, Solid-State Electronic., vol. 50, p.858, 2006.

    [43] M. Boudrissa, E. Delos, Y. Cordier, D. Théron, and J. C. De Jaeger, “Enhancement Mode Metamorphic Al0.67In0.33As/Ga0.66In0.34As HEMT on GaAs Substrate with High Breakdown Voltage”, IEEE Trans. Electron Devices Lett., vol. 21, no. 11, p. 512, 2000.

    [44] S. Fujita, T. Noda, C. Nozaki, and Y. Ashizawa, “InGaAs/InAlAs HEMT with a strained InGaP Schottky contact layer”, IEEE Trans. Electron Devices Lett., vol. 14, no. 5, p. 259, 1993.

    [45] N. Sugii, D. Hisamoto, K. Washio, N. Yokoyama, and S. Kimura, “Performance enhancement of strained-Si MOSFETs fabricated on a chemical-mechanical-polished SiGe substrate”, IEEE Trans. Electron Device., vol. 49, no. 12, p. 2237, 2002.

    [46] K. Rim, J. L. Hoyt, J. F. Gibbons, “ Fabrication and analysis of deep submicron strained-Si n-MOSFET's,” IEEE Trans. Electron Device, vol. 47, no. 7, p. 1406, 2000.

    [47] W. E. Hoke, P. S. Lyman, J. J. Mosca, H. T. Hendriks, and A. Torabi, “Improved pseudomorphic high electron mobility transistor structures on InGaAs substrates”, J. Appl. Phys., vol. 81, no. 2, p. 968, 1997.

    [48] G. H. Martint, A. Lepore, M. Seaford, B. Pereiaslavets, R. M. Spencer, and L. F. Eastman, “High temperature operation of AlInAs/InGaAs/AlInAs 3D-SMODFETs with record two-dimensional electron gas densities,” IEDM, 8-11 p.39, 1996.

    [49] S. Babiker, A. Asenov, S. Roy, J. R. Barker, and S. P. Beaumont, “Strain engineered InxGa1-xAs channel pHEMTs on virtual substrates: a simulation study”, Computational Electronics, IWCE-6, p. 178, 1998.

    [50] S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, “Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal–oxide–semiconductor field-effect transistors”, J. Appl. Phys., vol. 80, p. 1567, 1996.

    [51] J. L. Thobel, L. Baudry, A. Cappy, P. Bourel, and R. Fauquemberque, “Electron transport properties of strained InxGa1–xAs”, Appl. Phys. Lett., vol. 56, p. 346, 1990 .

    [52] Ch. Köpf, H. Kosina, and S. Selberherr, “Physical models for strained and relaxed GaInAs alloys: band structure and low-field transport”, Solid-State Electronics, vol. 41, no. 8, p. 1139, 1997.

    [53] C. Heedt, F. Buchali, W. Prost, W. Brockerhoff, D. Fritzsche, H. Niskel, R. Losch, W. Schlapp, F. J. Tegude, “Drastic Reduction of Gate Leakage in InAlAs/InGaAs HEMT’s Using a Pseudomorphic InAlAs Hole Barrier Layer”, IEEE Trans. Electron Devices., vol. 41, no. 10, p. 1685, 1994.

    [54] M. H. Somerville, R. Blanchard, J. A. del Alamo, K. G. Duh, and P. C. Chao, “On-state breakdown in power HEMTs: measurements and modeling”, IEEE Trans. Electron Devices., vol. 46, no. 6, p. 1087, 1999.

    [55] M. H. Somerville, R. Blanchard, J. A. del Alamo, K. G. Duh, and P. C. Chao, “A new gate current extraction technique for measurement of on-state breakdown voltage in HEMTs”, IEEE Trans. Electron Devices Lett., vol. 19, no. 11, p. 405, 1998.

    [56] J. Dickmann, S. Schildberg, K. Riepe, B. E. Maile, A. Schurr, A. Geyer, and P. Narozny, “Breakdown Mechanisms in Pseudomorphic InAlAs/InxGa1-xAs High Electron Mobility Transistors on InP. II: On-State”, Jpn. J. Appl. Phys., vol. 34, p. 1805, 1995.

    [57] H. M. Shieh, W. C. Hsu, R. T. Hsu, C. L. Wu, and T. S. Wu, “A high-performance δ-doped GaAs/InxGa1-xAs pseudomorphic high electron mobility transistor utilizing a graded InxGa1-xAs channel”, IEEE Trans. Electron Device Letters., vol. 14, no. 12, p. 581, 1993.

    [58] F. T. Chien, S. C. Chiol, and Y. J. Chan, “Microwave power performance comparison between single and dual doped-channel design in AlGaAs/InGaAs HFETs”, IEEE Trans. Electron Devices Lett., vol. 21, no. 2, p. 60, 2000.

    [59] H. C. Chiu, S. C. Yang, Y. J. Chan, S. H. Chen, W. S. Liu, J. I. Chyi, “The microwave power performance comparisons of AlxGa1-xAs/In0.15Ga0.85As (x = 0.3, 0.5, 0.7, 1.0) doped-channel HFETs”, IEEE Trans. Electron Devices., vol. 51, no. 1, p. 156, 2004.

    [60] A. Neviani, G. Meneghesso, E. Zanoni, M. Hafizi, C. Canali, “Positive temperature dependence of the electron impact ionization coefficient in In0.53Ga0.47As/InP HBTs”, IEEE Trans. Electron. Device Lett., vol. 18, p. 619, 2003.

    [61] A. Di Carlo, L. Rossi, P. Lugli, G. Zandler, G. Meneghesso, M. Jackson, E. Zanoni, “Monte Carlo study of the dynamic breakdown effects in HEMT's”, IEEE Trans. Electron. Device Letters., vol. 21, p. 149, 2000.

    [62] A. Sleiman, A. Di Carlo, P. Lugli, G. Meneghesso, E. Zanoni, J. L. Thobel, “Channel thickness dependence of breakdown dynamic in InP-based lattice-matched HEMTs”, IEEE Trans. Electron Devices., vol. 50, no. 10, p. 2009, 2003.

    [63] F. T. Chien, J. M. Yin, H. C. Chiu, Y. J. Chan, “Channel thickness dependence of breakdown dynamic in InP-based lattice-matched HEMTs”, IEEE Trans. Electron Devices., vol. 26, no. 12, p. 861, 2005.

    [64] H. C. Chiu, S. C. Yang, C. K. Lin, M. J. Hwu, H. K. Chiou, Y. J. Chan, “K-band monolithic InGaP-InGaAs DCFET amplifier using BCB coplanar waveguide technology”, IEEE Trans. Electron Devices., vol. 25, no. 25, p. 253, 2004.

    [65] H. C. Chiu, S. C. Yang, C. K. Lin, M. J. Hwu, Y. J. Chan, “0.2 μm gate-length InGaP-InGaAs DCFETs for C-band MMIC amplifier applications”, IEEE Trans. Electron Devices., vol. 50, no. 7, p. 1599, 2003.

    [66] S. C. Yang, H. C. Chiu, M. J. Hwu, W. K. Wang, C. K. Lin, Y. J. Chan, “Submicron RIE recessed InGaP/InGaAs doped-channel FETs”, IEEE Trans. Electron Devices., vol. 50, no. 6, p. 1555, 2003.

    [67] S. C. Yang, H. C. Chin, F. T. Chien, Y. J. Chan, and J. M. Kuo, “RIE gate-recessed (Al0.3Ga0.7)0.5In0.5P/InGaAs double doped-channel FETs using CHF3+BCl3 mixing plasma”, IEEE Trans. Electron Device Letters., vol. 22, no. 4, p. 170, 2001.

    [68] B. Lambert, N. Malbert, N. Labat, F. Verdier, and A. Touboul, “Empirical modeling of LF gate noise in GaAs DCFET in impact ionization regime”, IEEE Trans. Electron Device Letters., vol. 22, no. 2, p. 50, 2001.

    [69] F. T. Chien, S. C. Chiol, and Y. J. Chan, “Microwave power performance comparison between single and dual doped-channel design in AlGaAs/InGaAs HFETs”, IEEE Trans. Electron Device Letters., vol. 21, no. 2, p. 60, 2000.

    [70] S. S. Lu, C. C. Meng, Y. S. Lin, and H. Lan, “The effect of gate recess profile on device performance of Ga0.51In0.49P/In0.2Ga0.8As doped-channel FET's”, IEEE Trans. Electron Devices., vol. 46, no. 1, p. 48, 1999.

    [71] M. T. Yang and Y. J. Chan, “Device linearity comparisons between doped-channel and modulation-doped designs in pseudomorphic Al0.3Ga0.7 As/In0.2Ga0.8As heterostructures”, IEEE Trans. Electron Devices., vol. 43, no. 8, p. 1174, 1996.

    [72] Y. J. Chan, and M. T. Kang, “Device linearity improvement by Al0.3Ga0.7As/In0.2Ga0.8As heterostructure doped-channel FETs”, IEEE Trans. Electron Device Letters., vol. 16, no. 1, p. 33, 1995.

    [73] Y. J. Chan, and M. T. Kang, “Al0.3Ga0.7As/InxGa1-xAs doped-channel field-effect transistors (DCFET's)”, IEEE Trans. Electron Devices., vol. 42, no. 10, p. 1745, 1995.

    [74] J. H. Tsai, “A novel InGaP/InGaAs/GaAs double delta-doped pHEMT with camel-like gate structure”, IEEE Trans. Electron Device Letters., vol. 24, no. 1, p. 1, 2003.

    [75] W. S. Lour, M. K. Tsai, K. Y. Lai, B. L. Chen and Y. J. Yang, “Studies and comparisons of a N+-InGaP/δ(P+)-InGaP/n-GaAs hetero-planar-doped structure to high-linearity microwave field-effect transistors”, Semicond. Sci. Technol., vol.16, no. 4, p.191, 2004.

    [76] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a New InGaP/InGaAs Pseudomorphic Double Doped-Channel Heterostructure Field-effect Transistor (PDDCHFET), IEEE Trans. Electron Devices., vol. 50, p. 1717, 2003.

    [77] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, P. H. Lai, C. I. Kao, and W. C. Liu, “Study of InGaP/InGaAs Double Delta-Doped Channel Heterostructure Field-Effect Transistors (DDDCHFETs)”, J. Vac. Sci. & Technol., vol. B22, p. 832, 2004.

    [78] P. H. Lai, H. M. Chuang, S. F. Tsai, C. I. Kao, H. R. Chen, C. Y. Chen, and W. C. Liu, “Characteristics of a New Camel-Gate Field Effect Transistor (CAMFET) with a Composite Channel Structure”, Semicond. Sci. Technol., vol. 19, p. 912, 2004.

    [79] Y. S. Lin and J. H. Huang, “Mobility enhancement and breakdown behavior in InP-based heterostructure field-effect transistor”, J. Electrochem. Soc., vol. 152, p.G627, 2005.

    [80] C. C. Eugster, T. P. E. Broekaert, J. A. del Alamo, and C. G. Fonstad, “An InAlAs/InAs MODFET”, IEEE Trans. Electron Device Letters., vol. 12, p. 707, 1991.

    [81] K. W. Lee, K. L. Lee, X. Z. Lin, C. H. Tu, and Y. H. Wang, “Improvement of Impact Ionization Effect and Subthreshold Current in InAlAs/InGaAs Metal–Oxide–Semiconductor Metamorphic HEMT With a Liquid-Phase Oxidized InAlAs as Gate Insulator”, IEEE Trans. Electron Devices., vol. 54, p. 418, 2007.

    [82] M. H. Somerville, C. S. Putnam, and J. A. del Alamo, “Determining dominant breakdown mechanisms in InP HEMTs”, IEEE Trans. Electron Device Lett., vol. 22, no. 12, p. 565, 2001.

    [83] S. R. Bahl, J. A. del Alamo, and J. Dickmann, S. Schildberg, “Physics of breakdown in InAlAs/InGaAs MODFET's”, IEEE Trans. Electron Devices., vol. 40, p. 2110, 1993.

    [84] K. H. Yu, H. M. Chuang, K. W. Lin, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved Temperature-Dependent Performances of a Novel InGaP/InGaAs/GaAs Double Channel Pseudomorphic High Electron Mobility Transistor (DC-PHEMT)”, IEEE Trans. Electron Devices, vol. 49, p. 1687, 2002.

    [85] C. W. Chen, P. H. Lai, W. S. Lour, D. F. Guo, J. H. Tsai, and W. C. Liu, “Temperature dependences of an In0.46Ga0.54As/In0.42Al0.58As based metamorphic high electron mobility transistor (MHEMT)”, Semicond. Sci. Technol., vol. 21, p. 1358, 2006.

    [86] P. H. Lai, S. I. Fu, Y. Y. Tsai, C. H. Yen, H. M. Chuang, S. Y. Cheng, and W. C. Liu, “Thermal stability improvement of a sulfur–passivated InGaP/InGaAs/GaAs heterostructure field-effect transistor (HFET)”, IEEE Trans. on Device and Materials Reliability, vol. 6, pp. 52-59, 2006.

    [87] D. V. Lang, R. A. Logan, and M. Jaros, “Trapping characteristics and a donor-complex (DX) model for the persistent-photoconductivity trapping center in Te-doped AlxGa1 – xAs”, Phys. Rev. B, vol. 19, p. 1015, 1979.

    [88] M. O. Watanabe and Y. Ohba, “Interface properties for GaAs/InGaAlP heterojunctions by the capacitance-voltage profiling technique”, Appl. Phys. Lett., vol. 50, p. 906, 1987.

    [89] C. S. Lee, Y. J. Cheng, W. C. Hsu, K. H. Su, J. C. Huang, D. H. Huang, and C. L. Wu, “High-temperature threshold characteristics of a symmetrically-graded InAlAs/InxGa1-xAs/GaAs metamorphic high electron mobility transistor”, Appl. Phys. Lett., vol. 88, p. 223506, 2006.

    [90] K. Yuan and K. Radhakrishnam, “High breakdown voltage In0.52Al0.48As/In0.53Ga0.48As metamorphic HEMT using InxGa1-xP graded buffer”, in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 161, 2002.

    [91] M. H. Somerville, R. Blanchard, J. A. Del Alamo, G. Duh, and P. C. Chao, “On-state breakdown in power HEMT’s: measurements and modeling”, in IEDM Tech. Dig., p. 553, 1997.

    [92] X. Zheng, T. K. Carn, K. L.Wang, and B. Wu, “Electron mobility enhancement from coupled wells in delta-doped GaAs”, Appl. Phys. Lett., vol. 62, p. 504, 1993.

    [93] T. K. Carn, X. Zheng, B. Wu, and K. L.Wang, “Enhancement of Hall mobility in coupled -doped layers grown by molecular-beam epitaxy “, J. Vac. Sci. & Technol B., vol. 11, p. 885, 1993.

    [94] S. L. Chuang, “Efficient band-structures calculations of strained quantum wells”, Phys. Rev. B, vol. 43, p. 9649, 1991.

    下載圖示 校內:2008-07-14公開
    校外:2008-07-14公開
    QR CODE