簡易檢索 / 詳目顯示

研究生: 黃建華
Huang, Jane-Hwa
論文名稱: 蜂巢式通訊系統中整合服務之資源配置策略
Resource-Allocation Strategies for Integrated Services in Cellular Communication Systems
指導教授: 蘇賜麟
Su, Szu-Lin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 77
中文關鍵詞: 蜂巢式通訊系統整合服務資源配置策略
外文關鍵詞: Integrated Service, Cellular Communication Systems, Resource-Allocation Strategy
相關次數: 點閱:100下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在行動通訊系統的演進過程中,提供廣泛的服務(例如,高品質的語音服務、數據、電子郵件、傳真、影像和互動式的應用)已成為一個對全世界通訊系統的基本要求。為了在行動通訊系統中有效率地使用資源以及提供高品質的服務,無線電資源管理(RRM, Radio Resource Management)已成為一個極為重要的課題。本論文中,我們探討了在行動通訊系統中整合服務的資源配置策略。所提出的策略其基本想法是系統將會根據語音服務的負載來排定數據服務的傳送,並求滿足所有用戶服務品質的要求(QoS, Quality of Service)。

    在本論文中,首先我們提出一個在分時多重進接(TDMA)行動系統中整合語音、數據服務的資源配置策略。此服務整合的系統利用語音對話的安靜時間(Silent periods)以及如同GSM/GPRS系統般利用閒置頻道去傳送分封交換(Packet switch)的數據資料。分析數值結果顯示所提的策略能夠增加頻寬的使用效率、改善數據傳送的推送量及延遲,然而對現行的GSM/GPRS 系統並不會造成太大的影響。之後,我們在一個語音為主的碼分多重進接(CDMA)系統中研究語音活動(Voice activity)對系統性能的影響。我們分析出語音活動對系統容量的增益、以及考慮了語音活動之因素後頻道閒置之時間長度。所得的結果顯示有不少的容量閒置,並且閒置的時間長度是足夠去傳送數據封包。最後,我們探討在CDMA系統中語音、數據服務整合的資源配置策略。在此系統中,以延遲為重(Delay-sensitive)的語音訊務有較高的優先權使用頻道資源(Channel resource),然而以錯誤率為重(Error-sensitive)的數據訊務則有較高的優先權去使用功率資源(Power resource)。我們比較了三種功率資源配置方法:相同功率、相同服務可靠度、強健數據服務方法。藉由功率資源配置及允諾控制,本系統能給予語音和數據訊務不同的服務可靠度(Service reliability)和不同的服務品質。此外保護頻道(Guard channel) 的概念也被使用作為Interference margin,其目的是為了改善服務可靠度。本論文中的CDMA系統考慮了兩種型態的數據服務:固定長度的數據訊務,以及變動長度的數據服務。不同於前者,考慮了變動長度數據訊務的系統使用了一個兩階段的允諾控制策略(Two-level admission control) ,其中包含了呼叫允諾控制和封包允諾控制,以及採用了一個動態保護頻道方法去微調系統性能。

    Nowadays, in the evolution toward the next-generation mobile system, a wide range of services (such as high quality voice, data, electronic mail, facsimile, video and interactive applications) has imposed itself as an essential demand of the universal communications. To efficiently utilize the radio resource of mobile systems and provide services of high quality for all users, radio resource management has become a noticeably important issue in a service-integrated mobile cellular system. Therefore, we are motivated to investigate and develop resource-allocation strategies for integrated services in mobile cellular systems. The most principal concept of the proposed strategies is to schedule the data transmissions in accordance with the load of voice traffic and to ensure the predefined quality of service (QoS) requirements of all connections.

    In this dissertation, we first propose a resource-allocation strategy to integrate packet-switched data traffic into current TDMA-type circuit-switched digital voice system. This integrated system transmits data packets during the silent periods of a conversation with voice activity detection and adapts itself to GSM/GPRS system which uses the idle channels to provide data service. We show that the proposed strategy can increase the bandwidth utilization efficiency and improve throughput/delay performance of the data transmission, while minimize he impacts on current GSM/GPRS system. Then, we study the effect of voice activity on the system performance in a voice-oriented CDMA sys-tem. We present a general analytical methodology to evaluate the capacity gain due to voice activity and the time duration of idle period of multiaccess link. It is demonstrated that a lot of unused capacity and a long enough idle period of multiaccess link can be employed to send the packet-switched data traffic. Last, we investigate the resource-allocation strategy for an integrated voice/data cellular CDMA system. The delay-sensitive voice traffic has a higher priority to use the channel resource, whereas the error-sensitive data traffic has a higher priority to use the power resource. Three power resource allocation schemes are compared: equal power scheme, equal service-reliability scheme, and robust data scheme. By means of the power resource allocation and the admission control, the sys-tem can offer different service reliability (and QoS) to voice and data services. The concept of guard channel is used as interference margin to improve the service reliability. This integrated CDMA sys-tem is analyzed for two cases : 1) system with .xed length data traffic and 2) system with variable length data traffic. Different from the former one, the system with variable length data traffic employs a two-level admission control policy, which consists of a call-admission control and a packet-level admission control, and adopts a dynamic guard-channel scheme to tune the system performance.

    Contents i List of Tables iv List of Figures v 1 Introduction 1 1.1 Motivation of Research 1 1.1.1 Data Transmission in GSM/GPRS System with Voice Activity Detection 2 1.1.2 Resource-Allocation Strategy in Integrated Cellular CDMA Networks 3 1.2 Dissertation Organization 4 2 Design and Performance Analysis for Data Transmission in GSM/GPRS System with Voice Activity Detection 6 2.1 System Model and Proposed Protocol 6 2.1.1 System Model 6 2.1.2 Protocol 8 2.2 Performance Analysis 11 2.2.1 Capacity of Data Transmission and Percentage of Damaged Voice in TCHs . 11 2.2.2 Performance of Data Service 14 2.3 Numerical Examples 17 3 Preliminary : Effect of Voice Activity on System Performance of CDMA Network 22 3.1 Capacity Enhancement of Cellular CDMA System by Voice Activity Detection 22 3.1.1 Voice Traffic Source Models 23 3.1.2 System Evaluation 24 3.1.3 Numerical Examples and Discussion 25 3.2 Idle Period of Multiaccess Link due to Voice Activity 26 4 Radio Resource Management for Integrated Services in Cellular CDMA Systems with Fixed Length Data Traffic 29 4.1 System Model Description 29 4.1.1 Traffic Model for Voice 30 4.1.2 Traffic Model for Data 31 4.2 Admission Control for Data Traffic 31 4.2.1 Admission Control Strategy 32 4.2.2 Power Resource Allocation 33 4.3 Performance Analysis 33 4.3.1 Outage Probability of Voice Traffic 35 4.3.2 Failure Probability of Data Traffic 36 4.3.3 Net Throughput of Data Packet 36 4.3.4 Delay of Data Packet 36 4.4 Numerical Results and Discussions 37 5 Resource-Allocation Strategy in Integrated Voice/Data Cellular CDMA Systems with Variable Length Data Traffic 41 5.1 System Model Description 41 5.1.1 Traffic Model for Voice 42 5.1.2 Traffic Model for Data 44 5.2 Resource-Allocation Strategy 44 5.2.1 Admission Control Policy 46 5.2.2 Dynamic Guard-Channel Scheme 47 5.2.3 Power Resource Allocation 48 5.3 Performance Analysis 49 5.3.1 Outage Probability of Voice Traffic 51 5.3.2 Failure Probability of DataTraffic 52 5.3.3 Throughput of Data Traffic 53 5.3.4 Delay of Data Traffic 53 5.4 Numerical Results and Discussions 54 6 Conclusions 61 Appendix 63 Bibliography 72

    [1] D. N. Knisely et al., “Evolution of wireless data services: IS-95 to cdma2000,” IEEE Commun. Mag., vol. 36, pp. 140–149, Oct. 1998.
    [2] IEEE Pers. Commun., Special issue on IMT-2000: standards efforts of the ITU, vol. 4, Aug. 1997.
    [3] T. Ojanpera and R. Prasad, “An overview of air interface multiple access for IMT-2000/UMTS,”IEEE Commun. Mag., vol. 36, pp. 82–95, Sep. 1998.
    [4] D. Turina and P. Beming, “A proposal for multislot MAC layer operation for packet data channel in GSM,” in Proc. IEEE VTC’96, pp. 572–576, 1996.
    [5] P. T. Brady, “A technique for investigating on-off patternsof speech,” Bell Syst. Tech. J., vol. 44, no. 1, pp. 1-22, Jan. 1965.
    [6] G. Wu, K. Mukumoto and A. Fukuda, “A dynamic TDMA wireless integrated voice/data system with data steal into voice (DSV) technique,” IEICE Trans. Commun., vol. E78-B, no. 8, pp. 1125–1135, Aug. 1995.
    [7] S. Nanjiv et al., “Performance of PRMA,” IEEE Trans. Veh. Technol., vol. 40, no. 3, pp. 584-598, Aug. 1991.
    [8] W.-C. Wong and D. J. Goodman, “Integrated data and speech transmission using packet reservation multiple access,” in Proc. ICC’93, pp. 172–176, 1993.
    [9] S. S. Chakraborty, “The XTDMA : a packet access protocol for mobile multimedia, and its application to packet voice overlay services over existing TDMA cellular air interface,” in Proc. ICC’94, pp. 324–328, 1994.
    [10]Y. T. Kim and S.-Q. Li, “Performance evaluation of packet data services over cellular voice networks,” in Proc. IEEE GLOBECOM’97, pp. 1022–1029, 1997.
    [11] W.-B. Yang and E. Geraniotis, “Admission policies for integrated voice and data traffic in CDMA packet radio networks,” IEEE J. Select. Areas Commun., vol. 12, pp. 654–664, May 1994.
    [12] M. Soroushnejad and E. Geraniotis, “Multi-access strategies for an integrated voice/data CDMA packet radio network,” IEEE Trans. Commun., vol. 43, pp. 934–945, Feb./Mar./Apr. 1995.
    [13] L. Zhang, X. Cheng and K. R. Subramanian, “The admission control for integrated video conferencing/voice/data services in broadband CDMA networks,” Computer Commun., vol. 23, pp. 499–510, Mar. 2000.
    [14] C.-N. Wu, Y.-R. Tsai and J.-F. Chang, “A quality-based birth-and-death queueing model for evaluating the performance of an integrated voice/data CDMA cellular system,” IEEE Trans. Veh. Technol., vol. 48, pp. 83–89, Jan. 1999.
    [15] Y.-R. Huang, Y.-B. Lin and J.-M. Ho, “Performance analysis for voice/data integration on a finite-buffer mobile system,” IEEE Trans. Veh. Technol., vol. 49, pp. 367–378, Mar. 2000.
    [16] Y. Yang, J. He and M. T. Liu, “A medium access control protocol for voice and data integration in receiver-oriented DS-CDMA PCNs,” in Proc. IEEE Universal Personal Communications Record, pp. 38–42, 1997.
    [17] A. Sampath and J. M. Holtzman, “Access control of data in integrated voice/data CDMA systems: benefits and tradeoffs,” IEEE J. Select. Areas Commun., vol. 15, pp. 1511–1526, Oct. 1997.
    [18] T.-K. Liu and J. A. Silvester, “Joint admission/congestion control for wireless CDMA systems supporting integrated services,” IEEE J. Select. Areas Commun., vol. 16, pp. 845–857, Aug. 1998.
    [19] C. Comaniciu and N. B. Mandayam, “Delta modulation based prediction for access control in integrated voice/data CDMA systems,” IEEE J. Select. Areas Commun., vol. 18, pp. 112–122, Jan. 2000.
    [20]T.-H. Lee and J. T. Wang, “Admission control for variable spreading gain CDMA wireless packet networks,” IEEE Trans. Veh. Technol., vol. 49, pp. 565–575, Mar. 2000.
    [21] 3GPP RAN TS 25.302: “Services Provided by the Physical Layer”.
    [22] Jian Cai, D. J. Goodman, “General packet radio service in GSM,” IEEE Commun. Mag., pp. 122–131, Oct. 1997.
    [23] G. Brasche, B. Walke, “Concepts, services, and protocols of the new GSM phase 2+ general packet radio service,” IEEE Commun. Mag., pp. 94–104, Aug. 1997.
    [24] J. Hamalainen , H. Jokinen, Z. Honkasalo, and R. Fehlmann, “Multi-slot packet radio air interface to TDMA systems tvariable rate reservation access(VRRA),” in Proc. IEEE VTC’95, pp. 366–371, 1995.
    [25] S. Nanda, “Analysis of packet reservation multiple access: voice and data integration for wireless networks,” in Proc. GLOBECOM’90, pp. 1984-1988, 1990.
    [26] L. Kleinrock, Queueing Systems, Vol. 1: Theory. New York: Wiley, 1975.
    [27] K. S. Gilhousen et al., “On the capacity of a cellular CDMA system,” IEEE Trans. Veh. Technol., vol, 40. no. 2, pp. 303–312, May 1991.
    [28] A. J. Viterbi, “The orthogonal-random waveform dichotomy for digital mobile personal communication,”IEEE Personal Commun. Mag., pp. 18–24, First Quarter, 1994.
    [29] A. Fukasawa et al., “Wideband CDMA system for personal radio communications,” IEEE Commun. Mag., pp. 116–123, Oct. 1996.
    [30] R. Kohno, R. Meidan, and L. B. Milstein, “Spread spectrum access methods for wireless communication,”IEEE Commun. Mag., pp. 58–67, Jan. 1995.
    [31] P. Newson and M. R. Heath, “The capacity of a spread spectrum CDMA system for cellular mobile radio with consideration of system imperfections,” IEEE J. Select. Areas Commun., vol. 12, no. 4, pp. 673–684, May 1994.
    [32]P. T. Brady, “A statistical analysis of on-off patterns in 16 conversations,” Bell Syst. Tech. J., pp. 73–91, Jan. 1968.
    [33] R. W. Muise, T. J. Schonfeld, and G.H. Zimmerman III, “Experiments in wideband packet technology,”Proc. 1986 Zurich Seminar, pp. D4.1–D4.5.
    [34] V. K. Garg and E. L. Sneed, “Digital wireless local loop system,” IEEE Commun. Mag., pp. 112–115, Oct. 1996.
    [35] D. J. Goodman et al., “Packet reservation multiple access for local wireless communication,”IEEE Trans. Commun., vol. 37, pp. 885-890, Aug. 1989.
    [36] A. J. Viterbi, A. M. Viterbi, and E. Zehavi, “Other-cell interference in cellular power-controlled CDMA,” IEEE Trans. Commun., vol. 42, pp. 1501–1504, Feb./Mar./Apr. 1994.
    [37] L. Kleinrock and F. A. Tobagi, “Packet switching in radio channels: part I — carrier sense multiple access modes and their throughput-delay characteristics,” IEEE Trans. Commun., vol. COM-23, pp. 1400–1416, Dec. 1975.
    [38] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication. Reading, MA: Addison-Wesley, 1995.
    [39] Y. Ishikawa and N. Umeda, “Capacity design and performance of call admission control in cellular CDMA systems,” IEEE J. Select. Areas Commun., vol. 15, pp. 1627–1635, Oct. 1997.
    [40] S. M. Ross, Introduction to Probability Models. New York: Academic, 1993.
    [41] A. D. Sacuta, “Data standards for cellular telecommunications–a service-based approach,” in Proc. IEEE VTC’92, pp. 262–266, 1992.
    [42] D. C. Cox, “Wireless networks access for personal communications,” IEEE Commun. Mag., vol. 30, pp. 96–115, Dec. 1992.
    [43] D. Weissman, A. H. Levesque and R. A. Dean, “Interoperable wireless data,” IEEE Commun. Mag., vol. 31, pp. 68–77, Feb 1993.
    [44] K. C. Budka, “Cellular digital packet data: channel availability,” in Proc. IEEE VTC'94, pp. 360–365, 1994.
    [45] S. S. Chakraborty, and S. Wager, “A new approach for medium-access control for data traffic and its adaptation to the GSM general packet radio services,” IEEE Trans. Veh. Technol., vol. 48, no. 1, pp. 240–248, Jan. 1999.
    [46] W. C. Y. Lee, Mobile Cellular Telecommunications Systems. New York:McGraw-Hill, 1989.
    [47] R. Syski, Introduction to Congestion Theory in Telephone Systems. Elsevier Science Publishing Company, Inc., 1985.
    [48] J. N. Daigle, “Throughput in asynchronous CDMA systems,” in Proc. IEEE INFOCOM’87, pp. 1079–1089, 1987.
    [49] M. Yin and V. O. K. Li, “Unslotted CDMA with fixed packet lengths,” IEEE J. Select. Areas Commun., vol. 8, pp. 529–541, May 1990.

    下載圖示 校內:2005-07-11公開
    校外:2006-07-11公開
    QR CODE