簡易檢索 / 詳目顯示

研究生: 盧家瑋
Lu, Chia-Wei
論文名稱: 一種新穎加成法製作RFID天線之研究
Studies on a novel additive method to fabricate RFID antenna
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 84
中文關鍵詞: 無線射頻辨識網版印刷銅鋁置換天線
外文關鍵詞: Antenna, Copper, Screen printing, Radio Frequency Identification, replacement process
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統業界製程天線的方式是將銅箔基板利用銅箔基板去蝕刻的減法製程,此減法製程不只會造成大量銅金屬的浪費與和銅廢料,加上製程中會產生大量的蝕刻廢液及顯影液廢液,這些廢液對於環境的傷害很大。然而有些製造RFID的廠商雖然是用加法製程,但因為使用銅漿或銀漿直接印刷,使RFID的成本也因此居高不下,為了解決目前天線產業在製造過程中所衍生出的環保和成本問題,此論文將以實驗室獨特的銅鋁置換技術配上屬於加法製程的網版厚膜印刷技術(screen printing)製作天線,並探討置換後的銅金屬性質和天線特性。
      本論文將分成兩個部分:第一部分,主要是將具有多孔性結構和高氧化電位且可以於低溫進行燒結的厚膜鋁導電膏印刷在軟性基板上,並利用硫酸銅廢液搭配少量添加劑的置換溶液將厚膜印刷鋁導線置換成高導電率銅導線,並探討置換前後其金屬物理特性、金屬表面平整度、金屬厚度、銅沉積與銅置換的速率、銅鋁置換比例和銅晶粒的類型。經由實驗發現當使用太多加速劑類型的添加劑,金屬厚度在置換溫度超過60˚C後會大幅增加,且表面變得很不平整,但使用的添加劑有包含抑制劑和氯離子時,可以改善當置換溫度超過60˚C時金屬表面不平整的問題。在電阻率方面,經實驗發現最好的銅品質是發生在置換溫度為55°C置換時間60分時,換算出的電阻率為7.21*10-8 Ωm,跟理想銅金屬的電阻率1.7*10-8 Ωm大概差了4.24倍。
      第二部分將此創新的製程方法應用於天線上,如RFID (Radio Frequency Identification)的標籤天線,透過調整浸泡在溶液的時間觀察金屬置換程度,並將不同參數下製作出的天線利用網路分析儀測量頻率、利用讀取器測量標籤天線讀取距離和在無反射室測量天線的場型變化。經量測後發現利用FCCL去製造的天線在未加晶片時S11的模態大約只有-14dB而增益為-3.5dBi,在加晶片後讀取距離大約為8公尺。使用創新置換方法製作出來的天線在未加晶片時,模態可達-20dB到-30dB之間,增益最好可達到-0.597dBi。而量測距離最遠甚至可達9.5公尺以上。

    The subtractive process, which involves etching copper foil, has traditionally been employed in antenna fabrication. This procedure generates a great deal of metal and chemical waste, which is extremely hazardous to the environment. To address this issue, several RFID manufacturers have begun to employ an additive method. Copper or silver paste, on the other hand, is relatively expensive.
    This paper will be divided into two parts: The first section of this research is built on the basis of a thick film aluminum conductive paste substrate. To replace aluminum with copper and achieve a high conductivity antenna electrode, the replacement procedure uses copper sulfate waste effluent and some additives. The physical properties of the metal such as surface flatness, deposition rate and thickness, aluminum-copper replacement ratio, and deposited copper grain type were investigated. The amount of accelerator-type additive used in this investigation was shown to be directly related to the thickness of deposited copper, with a lumpy surface resulting from reactions at temperatures above 60˚C. At high temperatures, inhibitors and Cl- can aid in surface smoothing. The resistivity of the samples was used to determine the electrical property. The lowest resistivity exhibited by sample prepared at 55°C for 60 minutes with resistivity is 7.21×10-8 Ωm which is still higher about ~4.24 times than the ideal copper resistivity with 1.7×10-8 Ωm.
    The second part of this study is preparing electrodes with different parameters of immersion duration used in RFID (Radio Frequency Identification) tagging antennas. The frequency of the antennas with a network analyzer, the reading distance of the labeled antennas with a reader, and the radiation pattern change of the antennas in a chamber was measured and analyzed. The antenna without IC, which made by FCCL, S11 is only about -14 dB and the gain is -3.5 dBi and the reading distance is about 8 meters after adding the IC. And the antenna without IC, which made by chemical replacement method, its S11 can reach between -20 dB and -30 dB and the gain is -0.597 dBi, and the reading distance can over 9.5 meters after adding the IC.

    摘要 I Abstract II 誌謝 III Content IV List of Table VIII List of Figure IX Chapter 1 Introduction 1 1-1 Research Background 1 1-2 Research Motivation 3 1-3 Research Method 4 1-4 Research Outline 5 Chapter 2 Theory 6 2-1 Principles of Chemical Replacement 6 2-1-1 Redox Reaction 6 2-1-2 Galvanic Series 6 2-1-3 Factors Affecting Chemical Replacement Reactions 8 2-1-3-1 Additives Introduction 8 2-1-4 Introduction of Thick Film Conductive Paste 9 2-1-4-1 Composition of Thick Film Conductive Aluminum Paste 10 2-2 Thick Film Screen Printing 10 2-2-1 Introduction and Principle of Screen Printing 10 2-2-2 Applications of Screen Printing 11 2-2-3 The Production Process of the Screen Stencil 12 2-2-4 Steps of Screen Printing 12 2-3 Flexible Printed Circuit Board 13 2-3-1 Introduction of Flexible Printed Circuit Board 13 2-3-2 Types of Flexible Printed Circuit Boards 14 2-3-3 Basic Structure of Flexible Printed Circuit Board 14 2-4 Theory of Antenna 16 2-4-1 Radio-Frequency Spectrum 16 2-4-2 Basic Theory of Antenna 17 2-4-2-1 Principle of Antenna Operation 17 2-4-2-2 Introduction of Antenna Characteristic Parameters 17 2-4-3 Introduction of Dipole Antenna 20 2-4-3-1 Theory of Dipole Antenna 21 2-5 Introduction of RFID 22 2-5-1 The Composition and Operation Principle of RFID System 22 2-5-2 RFID Frequency Bands 25 2-6 Characterizations and Measuring Instruments 27 2-6-1 Optical Microscope 27 2-6-2 Scanning Electron Microscope 28 2-6-2-1 Operating Principle of Scanning Electron Microscope 28 2-6-3 LCR Meter 29 2-7 Measuring Instruments for Antennas 30 2-7-1 Vector Network Analyzers 30 2-7-1-1 Operating Principle of Vector Network Analyzers 30 2-7-1-2 Calibration of Vector Network Analyzers 31 2-7-2 Anechoic Chamber& Far-Field Measurement 31 2-7-2-1 Anechoic Chamber 31 2-7-2-2 Far-Field Measurement 32 2-7-3 Methods of Antenna Measurements 33 2-7-4 Introduction of Balun 35 2-7-4-1 Introduction of Balun Design 35 Chapter 3 Methodology 38 3-1 Experimental Design and Procedures 38 3-1-1 Introduction of Experimental Materials 39 3-1-2 Preparation of CuSO4(aq) Replacement Solution 40 3-1-3 Introduction of Experimental Parameters for Replacement Method 41 3-2 Experimental Procedure 42 3-2-1 Chemical Replaced Samples 43 Chapter 4 Results and Discussion 44 4-1 Replace Aluminum with High Conductivity Copper at Low Temperatures Using Chemical Replacement Reactions 44 4-1-1 Chemical Replacement Solution Analysis 44 4-1-1-1 Oxidation Reaction 44 4-1-1-2 Polarization Curve 45 4-1-1-3 Reduction Reaction 46 4-1-2 Microstructure Analysis 47 4-1-2-1 Original Solution 47 4-1-2-1-1 Grain Structure Analysis 50 4-1-2-2 Solutions to Improve Flatness 52 4-1-2-3 Solutions to Improve Conductivity 54 4-1-2-3-1 Grain Structure Analysis 59 4-1-2-3-2 Copper Grain Size Analysis 60 4-1-3 Electrical Property Measurements 61 4-1-3-1 Discussion of Resistivity 61 4-2 RFID Module Analysis 63 4-2-1 Discussion of RFID Tag Antenna Characteristics 63 4-2-2 Tag Antenna without IC 63 4-2-3 Tag Antenna with IC 73 4-2-4 S11 of Tag Antenna Without IC in different Replacement Conditions 80 Chapter 5 Conclusion and Future Work 81 5-1 Conclusion 81 5-1-1 Chemical replacement synthesis 81 5-1-2 RFID Module Part 82 5-2 Future Work 82 Reference 83

    1. 張立奇;陳盟升;劉昌熾;張詠忠, 無線射頻辨識技術天線設計之介紹. 工業材料雜誌, 2011: p. 74~79.
    2. 劉毓容, 內外兼具的防護--淺談無線射頻識別(RFID)與二維條碼(2D Barcode)於防偽設計之運用. 印刷科技, 20190300: p. 59-89.
    3. 侯柄玄, 化學置換法處理印刷電路板氯化銅蝕刻廢液之研究. 中央大學環境工程研究所學位論文, 2011: p. 1-119.
    4. Yu-LinSun, Fabrication and applications of bimetallic material prepared by galvanic displacement reaction. 2013: p. 118.
    5. P.Healy、DerekPletcher、MarkGoodenough, J., The chemistry of the additives in an acid copper electroplating bath: Part II. The instability 4,5-dithiaoctane-1,8-disulphonic acid in the bath on open circuit. Journal of Electroanalytical Chemistry, 1992. 338(1-2).
    6. 横井昌幸, 小西三郎, and 林忠夫, 酸性硫酸銅めっき浴におけるポリエチレングリコ-ルの吸着挙動 [英文]. 電気化学および工業物理化学, 1984. 52(4): p. p218-223.
    7. Su, Y.-c., Influence of Leveler and Accelerator on Via-Filling Plating for Printed Circuit Board. 2003: p. 147.
    8. 廖信 and 王裕強, 網版印刷在微光機電系統製程之應用. 2008.
    9. 陳必軒, 創新高精度鋼版印刷之微結構設計暨製程技術開發. 中山大學機械與機電工程學系研究所學位論文, 2014: p. 1-104.
    10. Hung, C.-C., The Conductive Ink Usage of RFID Tag Printing by Screen Printing. 2015: p. 63.
    11. Wu, C.-Y., The optimization of a flexible PCB for high frequency applications. 2015.
    12. 趙譽祐, 產業信號傳輸線之電性與電磁輻射分析. 成功大學電機工程學系學位論文, 2016: p. 1-102.
    13. 李定皓, 軟性電路板技術介紹 : 台灣電路板協會. 2015.
    14. Liu, Y.-C., Realization of 100G/s Ethernet Optical Transceiver with Flexible Printed Circuit Board Design. 2016: p. 81.
    15. Lee, H. and K. Neville, Handbook of epoxy resins. 1967.
    16. 許礎峰, 應用於 IEEE 802.11 a/b/g 雙頻帶操作之寄生元件印刷單極天線. 成功大學電機工程學系學位論文, 2007: p. 1-70.
    17. Balanis, C.A., Antenna theory: analysis and design. 2015: John wiley & sons.
    18. 陳逸仙, 陶瓷晶片型 900/1800MHz 雙頻天線頻寬改善與等效電路模擬分析. 成功大學電機工程學系學位論文, 2005: p. 1-65.
    19. IEEE, IEEE Standard Definitions of Terms for Antennas. 1993: p. 32.
    20. Winder, S. and J. Carr, Newnes radio and RF engineering pocket book. 2002: Newnes.
    21. 李冠緯, 應用於 WiMAX 無線通訊系統平面陣列天線之研製. 成功大學電機工程學系學位論文, 2006: p. 1-71.
    22. Finkenzeller, K., RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication. 2010: John wiley & sons.
    23. 朱耀明, 林財世, and 高. 高雄師範大學工業科技教育學系系主任, 淺談 RFID 無線射頻辨識系統技術. 國立高雄師範大學, 生活科技教育月刊, 三十八卷, 2005(2).
    24. 李銘祥, 915MHz 射頻辨識系統標籤天線之設計. 成功大學電機工程學系學位論文, 2008: p. 1-73.
    25. Harmon, C.K., Standardization and Commercialization of RFID. RFID Committee, 2000. 25.
    26. Pohl, D.W., W. Denk, and M. Lanz, Optical stethoscopy: Image recording with resolution λ/20. Applied physics letters, 1984. 44(7): p. 651-653.
    27. Ash, E. and G. Nicholls, Super-resolution aperture scanning microscope. Nature, 1972. 237(5357): p. 510-512.
    28. Inouye, Y. and S. Kawata, Near-field scanning optical microscope with a metallic probe tip. Optics letters, 1994. 19(3): p. 159-161.
    29. Westphal, V. and S.W. Hell, Nanoscale resolution in the focal plane of an optical microscope. Physical review letters, 2005. 94(14): p. 143903.
    30. Zenhausern, F., M. O’boyle, and H. Wickramasinghe, Apertureless near‐field optical microscope. Applied Physics Letters, 1994. 65(13): p. 1623-1625.
    31. Seiler, H., Secondary electron emission in the scanning electron microscope. Journal of Applied Physics, 1983. 54(11): p. R1-R18.
    32. SEM, S.E.M., 掃描式電子顯微鏡. 材料分析儀器: p. 22.
    33. Hansen, R., Measurement distance effects on bayliss difference patterns. IEEE transactions on antennas and propagation, 1992. 40(10): p. 1211-1214.
    34. Hansen, R., Measurement distance effects on low sidelobe patterns. IEEE Transactions on Antennas and Propagation, 1984. 32(6): p. 591-594.
    35. Hurd, G., IEEE standard test procedures for antennas. Electronics and Power, 1980. 26(9): p. 749.
    36. Li, R., et al., Equivalent-circuit analysis of a broadband printed dipole with adjusted integrated balun and an array for base station applications. IEEE Transactions on Antennas and Propagation, 2009. 57(7): p. 2180-2184.

    無法下載圖示 校內:2026-10-08公開
    校外:2026-10-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE