簡易檢索 / 詳目顯示

研究生: 楊巧婕
Yang, Chiao-Chieh
論文名稱: 2.4 GHz具倍頻諧波偵測辨識技巧的射頻獵能標籤設計
Design of 2.4 GHz RF Energy Harvesting Tag With Detectable Second-Harmonic Identification Technique
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 97
中文關鍵詞: 獵能雙頻天線倍頻諧波增強耦合器全閘極交叉耦合整流器諧波偵測射頻標籤
外文關鍵詞: dual-band antenna, energy harvesting, fully gate cross-coupled rectifier, harmonic detection, RF tag, second-harmonic-enhanced coupler
相關次數: 點閱:107下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為設計應用於2.4 GHz諧波倍頻偵測獵能標籤,著眼開發一個可應用於獵能及被感測定位的新型標籤架構。此標籤不同於以往獵能器在敘述反射諧波時皆視之為可獵獲能量的損失,配合具有物件位置識別(方向偵測)之功率發射器共同組成一射頻獵能系統時,可藉由獵能器反射之倍頻諧波強度大小提供位置(定位偵測)或距離資訊(距離偵測)。利用在獵能電路中接上開關可控式諧波反射源,即可達到當功率發射器發射一訊號時,標籤可由雙頻天線接收基頻訊號和傳送倍頻訊號。倘若射頻電子標籤能量尚未獵取完成(未完成充電)時,則傳送倍頻諧波訊號至發射端,使功率發射器之天線陣列透過波束成型(Beamforming)技術搜尋並明確定位該標籤,為其快速充電。並於標籤充電過程中,逐漸降低倍頻諧波反射功率大小,增加獵能電路整流器的功率轉換效率。
    本論文將提供雙頻天線、倍頻諧波增強耦合器之設計和分離式元件組裝於FR4電路板上驗證。當電路板中輸入功率+5 dBm時,開關切換前後所偵測的諧波得以有4.3 dB的差異,並在開關切換前後效率由27 %變至42 %,大幅提高15 %的轉換效率。此外本論文還利用晶片電路設計驗證相同概念,以期進一步改善因分離式電路板之體積與重量限制可裝載的接收器種類和分離式開關需額外偏壓控制開關切換的問題。晶片採用TSMC 90 nm製程進行製作。積體化除了改善體積大小需求與無須提供額外偏壓給予開關外,還大幅增加轉換效率(Power conversion efficiency, PCE)、可進行效率轉換之輸入功率範圍(Range of input power)與增強倍頻諧波偵測效果。獵能晶片在量測輸入功率為-7.2 dBm時功率轉換效能最高可達72%,且在輸入功率+5 dBm時,開關切換前後得以有近40 dB的差異,且可接收輸入功率範圍為14 dB。由於獵能整流電路主要是將天線接收後訊號由交流(AC)轉換為直流(DC)供應後端電路,整流電路的好壞可由整流電路的靈敏度與功率轉換效率判斷。但整流器的電路普遍為配合前端天線接收頻率與後端電路所需的供應電壓進行設計,因此以往的研究發表中鮮少針對獵能整流電路提出評比指標(Figure of merit, FOM)。為了對整流電路設計的優劣有較為具體的比較,最後於本論文將提出兩種FOM作為獵能整流電路的評比指標以供參考。

    In this thesis, we propose a novel energy harvesting tag that can be applied to the radio frequency (RF) energy harvester with a second-harmonic identification capability. For the traditional RF energy harvester, the reflected harmonic wave is often regarded as a loss part of available energy. Different from the traditional ones, we proposed a tag with a stronger reflected harmonic in location detection mode and a better power conversion efficiency in energy hunting mode. By adding a switch-controllable harmonic reflection source in the harvester circuit, when the dedicated RF power emitter transmits a 2.4 GHz signal, the tag receives the signal by a dual-band antenna and reflects the related second-harmonic wave back to the power emitter, simultaneously. If the tag is not fully charged, according to the second-harmonic signal provided by the tag, the power emitter can identify the location of the tag and enhance the transmission of beamforming power, so that the tag can be charged quickly. As long as the tag is charged up gradually, the reflected second-harmonic signal strength will also be decreased gradually. The power conversion efficiency (PCE) can be optimized automatically.
    This thesis presents the design of a dual-band antenna, a second-harmonic-enhanced coupler, and an energy harvester on the FR4 circuit board with discrete components. When the input power is +10 dBm, the harvester tag can provide a 4.4-dB difference of second-harmonic signal strength for location use. In energy hunting mode, the power conversion efficiency is increased from 27% to 45%, and the power conversion efficiency is greatly improved by 18%.
    In order to prevent the tag from being out of the requirement of small volume and light weight, we implement a harvester IC chip by TSMC’s 90 nm process. In addition, we can use the rectifier output voltage to reduce the magnitude of the second-harmonic wave by using a PMOS switch. From the experimental results, we can get an enhanced difference of second-harmonic power in location detection mode, and a better power conversion efficiency and a wider input power range in energy hunting mode. The energy harvester IC chip has the maximum power conversion efficiency up to 72% when the input power is -7.2 dBm. When the input power is +5 dBm, the harvester can provide a 40 dB difference of second-harmonic signal strength between the previously mentioned different modes. The input power range, which is defined by the boundaries of power conversion efficiency greater than 10% and input power smaller than -10 dBm, is 14 dB. Finally, we proposed two FOM expression as the evaluation indexes of the energy harvesting circuit performances which have not been mentioned yet in previous research papers for a fair comparison.

    第一章 緒論 1 1.1前言 1 1.2研究背景與動機 1 1.2.1無線傳能功率發射器 2 1.2.2獵能接收端 5 1.3論文架構概述 7 第二章 2.4 GHz倍頻諧波偵測整流標籤 8 2.1 2.4 GHz倍頻諧波偵測整流標籤簡介 8 2.2雙頻微帶八木天線 9 2.2.1天線原理簡述 9 2.2.2微帶八木天線(Yagi-Uda Antenna) 13 2.2.3八木天線原理 14 2.2.4雙頻微帶八木天線設計方法 15 2.2.5模擬與量測結果 17 2.3倍頻諧波增強耦合器 20 2.3.1導論 20 2.3.2定向耦合器原理 21 2.3.3倍頻諧波增強耦合器 23 2.3.4設計方法 26 2.3.5模擬與量測 27 2.4 2.4 GHz倍頻諧波偵測與整流電路 30 2.4.1導論 30 2.4.2整流電路分析 31 2.4.3設計方法 35 2.4.4量測結果 40 第三章 2.4 GHz倍頻諧波偵測獵能晶片 45 3.1獵能晶片簡介 45 3.2含開關之諧振電路 47 3.2.1串聯與並聯諧振電路分析 47 3.2.2非理想串聯與並聯諧振電路分析 48 3.2.3 P型通道電晶體開關 50 3.2.4含開關之諧振電路 52 3.3整流器電路 54 3.3.1 CMOS整流器簡介 55 3.3.2全閘極交叉耦合整流器分析 (Fully Gate Cross-coupled rectifier, FGCC rectifier) 61 3.4 2.4 GHz倍頻諧波偵測獵能晶片 71 3.4.1 電路分析 71 3.4.2電路設計 72 3.4.3 電路模擬 74 3.4.4 電路量測 77 4.1 結論 89 4.2 未來展望 90 參考文獻……………………………………………………………91

    [1] R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless information and power transfer,” IEEE Trans. on Wirel. Commun. vol. 12, no. 5, pp. 1989-2001, May 2013.
    [2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2347-2376, 4th Quarter 2015.
    [3] G. Charvet, Small and Short-Range Radar Systems, chap. 2.5, pp. 58-65, CRC Press, April 2014.
    [4] X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, “Wireless Networks With RF Energy Harvesting: A Contemporary Survey,” IEEE IEEE Commun. Surveys Tuts., vol. 17, no. 2, pp. 757-789, Secondquarter 2015.
    [5] J. A. Paradiso and T. Starner, “Energy scavenging for mobile and wireless electronics,” IEEE Pervasive Comput., vol. 4, no. 1, pp. 18-27, Jan.-Mar. 2005.
    [6] A. Singh, and V. Lubecke, “Respiratory monitoring and clutter rejection using a CW doppler radar with passive RF tags,” IEEE Sensors Jou., vol. 12, no. 3, pp. 558-565, Mar. 2012.
    [7] R. Want, “An introduction to RFID technology,” IEEE Pervasive Computing, vol. 5, no. 1, pp. 25-33, Jan.-Mar. 2006.
    [8] D. Psychoudakis, W. Moulder, C. Chen, H. Zhu and J. L. Volakis, “A portable low-power harmonic radar system and conformal tag for insect tracking,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 444-447, Aug. 2008.
    [9] D. Allane, G. Andia Vera, Y. Duroc, R. Touhami and S. Tedjini, “Harmonic Power Harvesting System for Passive RFID Sensor Tags,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2347-2356, July 2016
    [10] C. Peng, S. Yang, A. Huang, T. Huang, P. Chung and F. Wu, “Harmonic enhanced location detection technique for energy harvesting receiver with resonator coupling design,” in Proc. IEEE Wireless Power Transf. Conf. (WPTC), Taipei, Taiwan, May 2017.
    [11] H. Aumann, and N. Emanetoglu, “A wideband harmonic radar for tracking small wood frogs,” in Proc. IEEE Radar Conf., Cincinnati, OH, USA, May 2014.
    [12] S. –F. Yang, T. –H. Huang, C. –C. Chen, C. –Y. Lu, and P. –J. Chung, “Beamforming power emitter design with 2x2 antenna array and phase control for microwave/RF-based energy harvesting,” in Proc. IEEE Wireless Power Transf. Conf. (WPTC), Colorado, May 2015, pp.1-4.
    [13] C. Chen, S. Yang, T. Huang, F. Wu and P. Chung, “Chargeable object location identification technique for antenna-arrayed RF power emitter using microcontroller-based harmonic reflection detection circuit,” in Proc. IEEE Wireless Power Transf. Conf. (WPTC), Aveiro, 2016, pp. 1-3.
    [14] Vijay Raghunathan, A. Kansal, J. Hsu, J. Friedman and Mani Srivastava, “Design considerations for solar energy harvesting wireless embedded systems,” Int. Symp. Inf. Process. Sensor Netw. (IPSN), Boise, ID, USA, Apr.2005, pp. 457-462.
    [15] S. Bandyopadhyay and A. P. Chandrakasan, “Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199-2215, Sept. 2012.
    [16] A. Khaligh, P. Zeng and C. Zheng, “Kinetic energy harvesting using piezoelectric and electromagnetic technologies—State of the art,” IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 850-860, March 2010.
    [17] P. Bahl and V. N. Padmanabhan, “RADAR: an in-building RF-based user location and tracking system,” in Proc. INFOCOM, vol. 2. Mar. 2000, pp. 775–784.
    [18] C.A. Balanis, Antenna Theory: Analysis and Design, 3rd Edition, New York: J. Wiley & Sons, 2005.
    [19] Xin-Chang Chen, Min-Chung Wu. 2011. Printed dual-band YAGI-UDA antenna and circular polarzation antenna. U.S. Patent No. 0090131
    [20] H. Sun, Y. Guo, M. He and Z. Zhong, “A dual-band rectenna using broadband Yagi antenna array for ambient RF power harvesting,” IEEE Antennas and Wireless Propagat. Lett., vol. 12, pp. 918-921, 2013.
    [21] Nuno B. Carvalho, A. Georgiadis, A. Costanzo et al., “Wireless power transmission: R&D activity within Europ,” IEEE Trans. Microw. Theory Techn., vol.62, no.4, pp.1031-1045, Apr. 2014.
    [22] Roberto Sorrentino and Giovanni Bianchi, Microwave and RF Engineering, pp. 211-220, Wiley, 2011.
    [23] S. Yang and T. Huang, “Design of single-turn spiral inductors with embedding a strong-coupling LC resonator for interference suppression," IEEE Transactions on Electromagnetic Compatibility, vol. 59, no. 3, pp. 919-926, Jun. 2017.
    [24] M. Kiani and M. Ghovanloo, “The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission," IEEE Trans. Circuits and Syst. I: Reg. Papers, vol. 59, no. 9, pp. 2065-2074, Sep. 2012.
    [25] S. Agrawal, S. K. Pandey, J. Singh and M. S. Parihar, “Realization of efficient RF energy harvesting circuits employing different matching technique,” in Proc. 15th Int. Symp. Quality Electron. Design (ISQED), Santa Clara, CA, 2014, pp. 754-761.
    [26] Binboga Siddik Yarman, Design of Ultra Wideband Power Transfer Networks, pp. 539-599, Wiley,2010.
    [27] J. D. Cockcroft and E. T. S. Walton, “Experiments with high velocity positive ions. (I) Futher development in the method of obtaining high postivie ions. ,” Proc. R. Soc. Lond. A., vol. 136, pp.619-630, Jun. 1932
    [28] J. S. Brugler, “Theoretical performance of voltage multiplier circuits,” IEEE J. Solid-State Circuits, vol. 6, no. 3, pp. 132-135, June 1971.
    [29] Jameco Electronic Corporation. [Online]. Available: https://www.rcscomponents.kiev.ua/datasheets/avago-hsms-2852-blkg-datasheet.pdf
    [30] Analog Devices Corporation. [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/hmc550ae.pdf
    [31] Murata Corporation. [Online]. Available: https://www.murata.com/~/media/webrenewal/support/library/catalog/products/capacitor/mlcc/c02e.ashx
    [32] Digi-Key (2016). How and why to use PIN diodes for RF switching. [Online]. Available: https://www.digikey.com/en/articles/techzone/2016/dec/how-and-why-to-use-pin-diodes-for-rf-switching
    [33] Bill Schweber (2015). Semiconductor RF switches: small but high-performing circuit components. [Online]. Available: https://www.digikey.com/en/articles/techzone/2015/jan/semiconductor-rf-switches-small-but-high-performing-circuit-components
    [34] Z. Tsai et al., “A high-range-accuracy and high-sensitivity harmonic radar using pulse pseudorandom code for bee searching,” IEEE Trans. on Microw. Theory Techn., vol. 61, no. 1, pp. 666-675, Jan. 2013.
    [35] U. Olgun, C. Chen and J. L. Volakis, “Wireless power harvesting with planar rectennas for 2.45 GHz RFIDs,” in Proc. URSI Int. Symp. Electromagn. Theory (EMTS), Berlin, 2010, pp. 329-331.
    [36] P. Nintanavongsa, U. Muncuk, D. R. Lewis and K. R. Chowdhury, “Design optimization and implementation for RF energy harvesting circuits,” IEEE Trans. Emerg. Sel. Topics Circuits Syst., vol. 2, no. 1, pp. 24-33, March 2012.
    [37] S. B. Alam, M. S. Ullah and S. Moury, “Design of a low power 2.45 GHz RF energy harvesting circuit for rectenna,” in Proc. International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Nov. 2013, pp. 1-4.
    [38] S. Agrawal, S. K. Pandey, J. Singh and M. S. Parihar, “Realization of efficient RF energy harvesting circuits employing different matching technique,” in Proc. 15th Int. Symp. Quality Electron. Design (ISQED), Santa Clara, CA, Apr. 2014, pp. 754-761.
    [39] X. Guo et al., “Design of high efficiency rectifier operating at 2.4 GHz,” in 2017 IEEE International Conference on Computational Electromagnetics (ICCEM), Kumamoto, 2017, pp. 164-165.
    [40] T. Thakuria and T. Bezboruah, “Design of an efficient RF energy harvesting system at 900 MHz,” in 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, 2018, pp. 84-87.
    [41] John D.Kraus, Ronald J.Marthefka, AntennasFor All Applications, pp. 539-599, McGraw-Hill Publishing Corp.,2001.
    [42] FCC RULES FOR ISM BAND WIRELESS EQUIPMENT. [Online]. Available: https://afar.net/tutorials/fcc-rules/
    [43] D. Niyato, E. Hossain, D. Kim, V. Bhargava, L. Shafai, “Wireless-Powered Communication Networks: Architectures, Protocols, and Applications,” Cambridge University Press., chap. 1, pp.3-43, Dec. 2016
    [44] Z. Popović, E. A. Falkenstein, D. Costinett and R. Zane, “Low-power far-field wireless powering for wireless sensors,” in Proc. IEEE, vol. 101, no. 6, June 2013, pp. 1397-1409.
    [45] G. Papotto, F. Carrara, A. Finocchiaro and G. Palmisano, “A 90-nm CMOS 5-Mbps crystal-less RF-powered transceiver for wireless sensor network nodes,” IEEE J. Solid-State Circuits, vol. 49, no. 2, pp. 335-346, Feb. 2014.
    [46] Y. Zhang et al., “A batteryless 19 μW MICS/ISM-band energy harvesting body sensor node SoC for ExG applications,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 199-213, Jan. 2013.
    [47] T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki and S. Otaka, “A 950-MHz rectifier circuit for sensor network tags with 10-m distance,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 35-41, Jan. 2006.
    [48] S. Hashemi, M. Sawan, and Y. Savaria, “A novel low-drop CMOS active rectifier for RF-powered devices: Experimental result,” Microelectron. J., vol. 40, pp. 1547–1554, Nov. 2009.
    [49] Koji Kotani and Takashi Ito, “High efficiency CMOS rectifier circuit with self-Vth-cancellation and power regulation functions for UHF RFIDs,”in 2007 IEEE Asian Solid-State Circuits Conf., Jen. 2007, pp. 119-122.
    [50] K. Kotani, A. Sasaki and T. Ito, “High-efficiency differential-drive CMOS rectifier for UHF RFIDs,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3011-3018, Nov. 2009.
    [51] S. Atsushi, K. Koji, and I. Takashi, “Differential-drive CMOS rectifier for UHF RFIDs with 66% PCE at -12 dBm Input,” in 2008 IEEE Asian Solid-State Circuits Conf. (ASSCC), Nov. 2008, pp. 105-108.
    [52] M. Mahmoud, A. B. Abdel-Rahman, G. A. Fahmy, A. Aliam, H. Jia, and R. K. Pokharel, “Dynamic threshold compensated, low voltage CMOS energy harvesting rectifier for UHF applications,” in Proc. IEEE 59th Int. Midwest Symp. Circuits Syst., Mar. 2016, pp. 1-4.
    [53] W. W. Y. Lau and L. Siek, “A 2.45GHz CMOS rectifier for RF energy harvesting,” in Proc. IEEE Wireless Power Transf. Conf. (WPTC), Jun. 2016, pp. 1-3.
    [54] Y. Chang, S. S. Chouhan, and K. Halonen, “A scheme to improve PCE of differential-drive CMOS rectifier for low RF input power,’’ Analog Integr. Circuits Signal Process., vol. 90, no. 1, pp. 113–124, Jan. 2017.
    [55] W. W. Y. Lau and L. Siek, “2.45GHz wide input range CMOS rectifier for RF energy harvesting,” in Proc. IEEE Wireless Power Transfer Conference (WPTC), Jun. 2017, pp. 1-4.
    [56] Kyle G. A. De Gannes. 2014. Design of analog CMOS circuits for batteryless implantable telemetry systems. Master's Thesis of Department of Electrical and Computer Engineering. The University of Western Ontario.
    [57] MCE KDI Integrated Products Corporation. [Online]. Available: https://www.digchip.com/datasheets/parts/datasheet/602/MH-42-pdf.php
    [58] Wang, Y. 2015. Tri-band CMOS circuit dedicated for ambient RF energy harvesting. Master's Thesis of Department of Electrical Engineering. The University of Polytechnique Montréal.
    [59] G. Papotto, F. Carrara and G. Palmisano, “A 90-nm CMOS Threshold-Compensated RF Energy Harvester,” IEEE J. Solid-State Circuits, vol. 46, no. 9, pp. 1985-1997, Sept. 2011.
    [60] M. Stoopman, S. Keyrouz, H. J. Visser, K. Philips and W. A. Serdijn, “Co-Design of a CMOS Rectifier and Small Loop Antenna for Highly Sensitive RF Energy Harvesters,” IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 622-634, March 2014.
    [61] S. S. Chouhan and K. Halonen, “Voltage multiplier arrangement for heavy load conditions in RF energy harvesting,” in Proc. Nordic Circuits Syst. Conf. (NORCAS), Copenhagen, 2016, pp. 1-5.
    [62] A. K. Moghaddam, J. H. Chuah, H. Ramiah, J. Ahmadian, P. Mak and R. P. Martins, “A 73.9%-Efficiency CMOS Rectifier Using a Lower DC Feeding (LDCF) Self-Body-Biasing Technique for Far-Field RF Energy-Harvesting Systems,” IEEE Trans. Circuits and Syst. I: Reg. Papers, vol. 64, no. 4, pp. 992-1002, Apr. 2017.
    [63] Y. Lu et al., “A wide input range dual-path CMOS rectifier for RF energy harvesting,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 2, pp. 166-170, Feb. 2017.
    [64] A. S. Almansouri, M. H. Ouda and K. N. Salama, “A CMOS RF-to-DC power converter with 86% efficiency and −19.2-dBm sensitivity,” IEEE Trans. on Microw. Theory Techn., vol. 66, no. 5, pp. 2409-2415, May 2018.
    [65] S. Kim et al., “A -20 to 30 dBm input power range wireless power system with a MPPT-Based reconfigurable 48% efficient RF energy harvester and 82% efficient A4WP wireless power receiver with open-loop delay compensation,” IEEE Trans. Power Electron., vol. 34, no. 7, pp. 6803-6817, July 2019.
    [66] G. Chong et al., “CMOS cross-coupled differential-drive rectifier in subthreshold operation for ambient RF energy harvesting -model and analysis,” IEEE Trans. Circuits Syst. II, Exp. Briefs. Jan. 2019.
    [67] D. Khan et al., “A CMOS RF energy harvester with 47% peak efficiency using internal threshold voltage compensation,” IEEE Microwave Wireless Comp. Lett., April 2019.
    [68] L. Tran, H. Cha, and W. Park, “RF power harvesting: a review on designing methodologies and applications,” Micro and Nano System Letters, Feb. 2017.
    [69] Chouhan S.S., Halonen K., “Voltage multiplier circuit for UHF RF to DC conversion for RFID applications,” in Proc. Proceedings of IEEE NORCHIP conference, pp.1-4, Oct. 2014.
    [70] F. H. Raab et al., “Power amplifiers and transmitters for RF and microwave,” IEEE Trans. on Microw. Theory Techn., vol. 50, no. 3, pp. 814-826, March 2002.
    [71] M. M. Mohamed et al., “High-efficiency CMOS RF-to-DC rectifier based on dynamic threshold reduction technique for wireless charging applications,” IEEE Access, vol. 6, pp. 46826-46832, Aug. 2018.
    [72] J.F. Dickson, "On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique," Solid-State Circuits, IEEE Journal of, vol. 11, no. 3, pp. 374-378, June 1976.

    下載圖示 校內:2021-06-20公開
    校外:2021-06-20公開
    QR CODE