簡易檢索 / 詳目顯示

研究生: 林昭儀
Lin, Chao-Yi
論文名稱: 二次離子佈植及微波退火製程對於高移動率矽鍺材料載子活化之影響
Effect of two-step ion implantation and microwave annealing on dopants activation of high mobility SiGe material
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 86
中文關鍵詞: 矽鍺材料微波退火載子活化電洞遷移率
外文關鍵詞: Silicon-Germanium material, Microwave annealing, Hole mobility, Dopants activation
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體源極汲極端的應力工程從45奈米世代至現今仍然被應用,當半導體尺寸的微縮,需要提高鍺濃度加入更多的應力,但增加鍺的同時會減少硼的含量,故需要使用離子佈植的方式補償硼濃度。本實驗著重於解決因離子佈植造成的問題,其中包含離子佈植損傷,擴散及摻雜離子的活化。故以各製程的各個節點著手設計實驗,進行不同矽鍺組成和二次離子佈值處理後,硼離子之活化情形及矽鍺材料的電性討論,同時,為了應對鍺的低溫製程,加入了低熱預算之微波退火和傳統快速熱退火的比對。
    實驗主要分成三部份。第一部分,在矽鍺薄膜上覆蓋矽、鍺及不覆蓋的情況下,經由離子佈植和熱退火後對薄膜品質及電性進行探討。在離子佈植之前覆蓋鍺的樣品經過後續的退火處理遭受到表面損失,使其表現接近未覆蓋的樣品,矽覆蓋樣品可以有效防止表面變得粗糙,進一步降低片電阻值。另一部分試片在退火之前覆蓋一層二氧化矽,在高溫的情況下,能有效的保護矽鍺試片,抑制表面氧化防止表面損失。
    第二部分,探討不同鍺含量之矽鍺合金其活化程度的趨勢與行為。研究顯示,硼的活化程度會隨著鍺含量增大而增加,較高鍺含量區間中,硼離子活化比率漸緩,高於臨界點會出現偏析現象導致元件特性下降。故不同濃度矽鍺與硼之間有一平衡點,實驗顯示在特定硼濃度下20~40%鍺含量之間,35%矽鍺為最佳值。矽鍺材料的表現在半導體尺寸持續微縮的進程下,熱處理溫度處於主導地位,但矽鍺材料的組成影響逐漸增大,精準控制內摻雜濃度(In-Situ Doping)成為需要重視的課題。
    第三部分,聚焦在不同材料預非晶化離子佈植的擴散情況及電性的研究,隨後以微波退火及快速熱退火進行晶格的修復,使用二次離子質譜儀(SIMS)確認對照組及矽、鍺離子佈植造成的非晶層中硼離子分布情況,以片電阻及遷移率等分析判斷硼離子的活化及離子佈植造成缺陷的演變,三種材料的預非晶化離子佈植以鍺離子佈植表現較佳,且微波退火能夠更有效地增進硼離子活化程度同時防止擴散發生。
    本論文證明經各製程步驟的改善及微波退火,有助於矽鍺材料的載子活化,抑制擴散情形及提高電性的表現。

    The strain engineering of the source/drain has been applied from the N45 till now. When the size of transistor is reduced continuously, it is necessary to increase the germanium concentration to add more stress, but it reduce boron concentration with increasing the germanium. The use of ion implantation compensates for the boron concentration well, while caused some problems, including ion implantation damage, diffusion and activation of dopant ions. Therefore, improvement was based on the process flow, to activate dopants by tuning different Ge content or pre- amorphized-implantation. At the same time, in order to cope with the low temperature process for Ge, microwave annealing was added to compare with rapid thermal annealing.
    There are three parts in this paper. First part, silicon germanium film covered with Si, Ge and uncovered before ion implantation is investigated. The sample covered with Ge undergoes surface loss after annealing, making it behave close to the uncovered sample, and the Si covering sample can effectively prevent the surface from roughness and further reduce the sheet resistance. The other part of the samples is covered with SiO2 before annealing, especially at a high temperature, can be effectively prevent surface from oxidation thus to suppress surface loss.
    The second part discusses the trend of the Boron activation in SiGe alloys with different Ge contents. The boron activation level increases with the increase of Ge content. When the content of Ge is higher, the trend will gradually saturate, and even segregate to cause the device degradation. So there is a trade-off between different concentrations of SiGe and boron. Experiments show that from 20% to 40% Ge with a dose of B (ISD 3.2x1020cm-2+I/I 3 x1015cm-2 and 2 x1015cm-2), Si0.65Ge0.35 is an optimum value. For dopants activation in SiGe material, thermal process is dominant, but the influence of SiGe composition is gradually increasing. The control of in-situ doping concentration has become an important issue.
    Third part, we focuse on the diffusion and electrical properties of various species pre-amorphized implantation, repair implant damage by microwave annealing and rapid thermal annealing. The sheet resistance, Boron distribution and mobility of sample was investigated to infer the activation level and defect evolution. The performance is the best with Ge PAI among the three samples, and it can enhance the boron activation by microwave annealing to prevent the diffusion effectively.

    摘要 I Abstract III 致謝 V Content VI List of Figures IX List of Tables XIII Chapter 1 Introduction 1 1-1 The overview of semiconductor 1 1-1-1 Scaling of Si-based CMOS and beyond Si 2 1-1-2 Strain Engineering 4 1-1-3 In-situ doped embedded SiGe source/drains 7 1-2 Critical issues for current manufacturing technologies 9 1-2-1 Phenomenon of defects after ion implantation 9 1-2-2 Degradation of electrical performance by thermal processes 12 1-3 Previous study on Silicon and Germanium by MWA 15 1-3-1 Silicon- Ultra-low temperature microwave annealing for ultra-shallow junctions 15 1-3-2 Germanium- Studies on Ultra Shallow Junction by Microwave Annealing for Activation of Phosphorus Dopant in Germanium 18 1-4 Motivation 21 Chapter 2 Theoretical Background 22 2-1 Ion implantation[38] 22 2-2 Mechanisms of Transient enhanced diffusion(TED) 22 2-3 Boron activation and diffusion-controlled defect during thermal treatments 23 2-3-1 Theory of diffusion-controlled defect, re-crystallization, and activation 24 2-3-2 Electrical activation of boron implanted Silicon-Germanium in pre-amorphized ultra shallow junctions [34] 28 Chapter 3 Experiment Scheme 36 3-1 Process Equipment 36 3-1-1 Ion Implanter 36 3-1-2 Microwave annealing 39 3-1-3 Rapid Thermal Anneal 45 3-2 Experiment procedures 46 3-2-1 Introduction 46 3-2-2 Experimental details 49 3-2 3-3 Analysis Equipment 50 3-3-1 Four-point probe 50 3-3-2 Hall Effect measurement 51 3-3-3 TEM 53 3-3-4 SIMS 53 3-3-5 AFM 56 Chapter 4 Results and Discussion 58 4-1 Comparison of Ultra-thin Si、Ge Capping Layer before implantation and SiO2 Capping Layer before Annealing 58 4-1-1 Surface Roughness with Different Capping Layer Conditions 58 4-1-2 Topography of Different Capping material 61 4-1-3 Electrical Characterization of Various Capping Layer Conditions 64 4-2 Investigation of Boron activation on Silicon-Germanium with different Ge content 67 4-2-1 The Analysis of Silicon-Germanium thin film after RTA 67 4-2-2 Electrical Characterization of Silicon-Germanium thin film by MWA 70 4-2-3 SiGe Epitaxy Layer Quality after MWA and RTA 73 4-3 Boron activation in pre-amorphized Si and Ge implantation on Silicon-Germanium 74 4-3-1 Introduction 74 4-3-2 The SIMS profile of P-Si AI and P-Ge AI annealed by RTA and MWA 75 4-3-3 Electrical Characterization of various PAI species by RTA 77 Chapter 5 Conclusion 79 Reference 80

    [1] Moore, G., Electronics 1965, 38, 114.(b) Reed, MA; Tour. Sci. Am, 2000. 282: p. 86.
    [2] Moore, G., Excerpts from a conversation with Gordon Moore: Moore’s Law. Video Transcript, Intel, 2005. 54.
    [3] Taur, Y. and T.H. Ning, Fundamentals of modern VLSI devices. 2013: Cambridge university press.
    [4] Dennard, R.H., et al., Design of ion-implanted MOSFET's with very small physical dimensions. IEEE Journal of Solid-State Circuits, 1974. 9(5): p. 256-268.
    [5] Kumar, M., Effects of Scaling on MOS Device Performance. IOSR Journal of VLSI and Signal Processing, 2015. 5(1): p. 25-28.
    [6] S. Oktyabrsky, P.D. Ye, ed. Fundamentals of III-V Semiconductor MOSFETs. ALD High-k/III-V Metal-Oxide-Semiconductor Devices and Correlated Empirical Model, ed. P.D. Ye., Springer, 2010.
    [7] International Technology Roadmap for Semiconductors, Vers. 2.0, 2015.
    [8] S. Takagi, T. Tezuka, T. Irisawa, S. Nakaharai, T. Numata, K. Usuda, N. Sugiyama, M. Shichijo, R. Nakane, S. Sugahara, Solid-State Electronics, vol. 51, p. 526, 2007.
    [9] A. Delabie, D.P. Brunco, T. Conard, P. Favia, H. Bender, A. Franquet, S. Sioncke, W. Vandervorst, S.V. Elshocht, M. Heyns, M. Meuris, E. Kim, P.C. McLntyre, K.C. Saraswat, J.M. LeBeau, J. Cagnon, S. Stemmer, W. Tsai, Journal of The Electrochemical Society, vol. 155, p. H937, 2008.
    [10] Nayfeh, H.M., et al. Hole transport in nanoscale p-type MOSFET SOI devices with high strain. in Proc. Device Res. Conf. 2007.
    [11] Khakifirooz, A. and D.A. Antoniadis. Transistor performance scaling: The role of virtual source velocity and its mobility dependence. in Electron Devices Meeting, 2006. IEDM'06. International. 2006. IEEE.
    [12] Antoniadis, D.A. and A. Khakifirooz. MOSFET performance scaling: Limitations and future options. in Electron Devices Meeting, 2008. IEDM 2008. IEEE International. 2008. IEEE.
    [13] Krishnamohan, T., et al. Low defect ultra-thin fully strained-Ge MOSFET on relaxed Si with high mobility and low band-to-band-tunneling (BTBT). in VLSI Technology, 2005. Digest of Technical Papers. 2005 Symposium on. 2005. IEEE.
    [14] S. C. Jain, W. Schoenmaker, R. Lindsay, P. A. Stolk, S. Decoutere, M. Willander, and H. E. Maes, J. Appl. Phys., Vol. 91, No. 11, 1 June (2002)
    [15] G. Z. Pan and K. N. Tu, J. Appl. Phys.82, 601 (1997); see also G. Z. Pan, K. N. Tu, and A. Prussin,ibid. 81,78(1997)
    [16] C. Bonafos, D. Mathiot, and A. Claverie, J. Appl. Phys.83,3008(1998).
    [17] A. Claverie et al. / Materials Science in Semiconductor Processing 3 (2000) 269-277
    [18] K. Cho, M. Numan, T. G. Finstad, W. K. Chu, J. Liu, and J. J. Wortman,Appl. Phys. Lett.47, 1321 (1985).
    [19] F. F. Morehead and R. F. Lever, Appl. Phys. Lett.48, 151 (1986).
    [20] A. E. Michel, W. Rausch, P. A. Ronsheim, and R. M. Kastl, Appl. Phys. Lett.50,416(1987).
    [21] P. M. Fahey, P. B. Griffin, and J. D. Plummer, Rev. Mod. Phys.61, 289(1989).
    [22] R. B. Fair, J. Electrochem. Soc.137,667(1990).
    [23] N. E. B. Cowern, K. T. F. Janssen, G. F. A. van-de-Walle, and D. J.Gravesteijn, Phys. Rev. Lett.65,2434(1990).
    [24] N. E. B. Cowern, J. T. F. Janssen, and H. F. F. Jos, J. Appl. Phys.68, 6191(1990).
    [25] N. E. B. Cowern, G. F. A. van-de-Walle, D. J. Gravesteijn, and C. J. Vriezema, Phys. Rev. Lett.67,212(1991).
    [26] N. E. B. Cowern and G. F. A. van de Walle, Mod. Phys. Lett. B5, 1555(1991).
    [27] P. A. Stolk, D. J. Eaglesham, H. J. Gossmann, and J. M. Poate, Appl.Phys. Lett.66, 1370 (1995).
    [28] P. A. Stolk, H. J. Gossmann, D. J. Eaglesham, D. C. Jacobson, H. S. Luftman, and J. M. Poate, Mater. Res. Soc. Symp. Proc.354, 307 (1995).
    [29] N. Cowern and C. Rafferty, MRS Bull.25,39(2000).
    [30] P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, and J. M. Poate, Nucl. Instrum. Methods Phys. Res. B96,187(1995).
    [31] W. K. Hofker, H. W. Werner, D. P. Oosthoek, and H. A. M. de-Grefte, Appl. Phys.2, 165 (1973).
    [32] W. K. Hofker, H. W. Werner, D. P. Oosthoek, and N. J. Cowman, Appl. Phys.4,125(1974).
    [33] H. Kai, M. Xueli, Y. Hong, and W. Wenwu, "Modulation of the effective work function of a TiN metal gate for NMOS requisition with Al incorporation," Journal of Semiconductors, vol. 34, p. 076003, 2013.
    [34] J. Takano, K. Makihara, and T. Ohmi, "Chemical oxide passivation for very thin oxide formation," in MRS Proceedings, p. 381, 1993.
    [35] K. Onishi, C. S. Kang, R. Choi, H.-J. Cho, S. Gopalan, R. E. Nieh, et al., "Improvement of surface carrier mobility of HfO2 MOSFETs by high-temperature forming gas annealing," IEEE Transactions on Electron Devices ,vol. 50, pp. 384-390, 2003.
    [36] R. E. Nieh, C. S. Kang, H.-J. Cho, K. Onishi, R. Choi, S. Krishnan, et al., "Electrical characterization and material evaluation of zirconium oxynitride gate dielectric in TaN-gated NMOSFETs with high-temperature forming gas annealing," IEEE Transactions on Electron Devices, vol. 50, pp. 333-340, 2003.
    [37] S. Zafar, A. Callegari, E. Gusev, and M. V. Fischetti, "Charge trapping in high k gate dielectric stacks," in Electron Devices Meeting, 2002. IEDM'02. International, pp. 517-520, 2002.
    [38] Camillo-Castillo, R.A., Boron activation and diffusion in silicon for varying initial process conditions during flash-assist rapid thermal annealing. 2006, University of Florida.
    [39] 43.Jones, K.S., S. Prussin, and E. Weber, A systematic analysis of defects in ion-implanted silicon. Applied Physics A: Materials Science & Processing, 1988. 45(1): p. 1-34.
    [40] 44. Tu, K., et al., X‐ray topographic determination of the absence of lateral strains in ion‐implanted silicon. Journal of Applied Physics, 1972. 43(10): p. 4262-4263.
    [41] 45. Brodsky, M., RS Title, K. Weiser, and GD Pettit. Phys. Rev. B, 1970. 1(6): p. 2632.
    [42] G. Dearnaley, J. H. Freeman, R. S. Nelson and J. Stephen, Ion Implantation, 1973.
    [43] L. Csepregi and J. W. Mayer. Phys. Letts., 54A (2), 157, 1975.
    [44] J. M. Poate and J.S. Williams, Ion Implantation and Beam Processing (Academic Press, New York 1984), p. 27, 1984.
    [45] J. Narayan and O. W. Holland, Phys. Stat. Sol., 78, 225, 1982.
    [46] J. Narayan, O.W. Holland and B. R. Appleton, J. Vac. Sci. Technol. B1(4), 871, 1993.
    [47] P.J. Timans, R.A. McMahon and H. Ahmed, Mat. Res. Soc. Proc., 45, 337, 1985.
    [48] P. J. Timans, R.A. McMahon and H. Ahmed, Mat. Res. Soc. Proc. 52, 123, 1986.
    [49] R. G. Elliman, J. S.Williams, S. T. Johnson and E. Nygren, Mat. Res. Soc. Proc. 74, 471, 1987.
    [50] R. G. Elliman, J. S.Williams, W. L. Brown, A. Leiberich, D. M. Mayer and R. V. Knoel, Nucl. Instr. Meth. Phys. Res. B. B19/20, 435, 1987.
    [51] L. Olson, J. A. Roth, L.D. Hess and J. Narayan, Mat. Res. Soc. Proc. 23, 375, 1984.
    [52] G.L. Olson, Mat. Res. Soc. Proc., 35, 25, 1985.
    [53] G.L. Olson, J. A. Roth, Y. Rytz-Froidevaux and J. Narayan, Mat. Res. Soc. Proc., 35, 211, 1985.
    [54] L. Csepregi and J. W. Mayer, Phys. Letts., 54A (2), 157, 1975.
    [55] L. Csepregi, J. W. Mayer and T.W. Sigmon, Appl. Phys. Lett., 29(2), 92, 1976.
    [56] M. Servidori, Z. Sourek, and S. Solmi, J. Appl. Phys. 62, 1723, 1987
    [57] Park, J., Y.-J. Huh, and H. Hwang, Comparison of ultralow-energy ion implantation of boron and BF 2 for ultrashallow p+/n junction formation. Applied physics letters, 1999. 74(9): p. 1248-1250.
    [58] Impellizzeri, G., et al., Fluorine counter doping effect in B-doped Si. Applied Physics Letters, 2007. 91(13): p. 132101.
    [59] E. Thostenson and T.-W. Chou, "Microwave processing: fundamentals and applications," Composites Part A: Applied Science and Manufacturing, vol. 30, pp. 1055-1071, 1999.
    [60] A. Metaxas, Foundations of electroheat: a unified approach: John Wiley & Sons Inc, 1996.
    [61] D. Stuerga, "Microwave-material interactions and dielectric properties, key ingredients for mastery of chemical microwave processes," Microwaves in Organic Synthesis (Loupy A, ed). 2nd ed. Weinheim, Germany: Wiley-VCH Verlag Gmbh & Co. KgaA, pp. 1-61, 2006.
    [62] H. Fröhlich, "Theory of dielectrics," 1949.
    [63] G. G. Raju, Dielectrics in electric fields vol. 19: CRC press, 2003.
    [64] P. Lidström, J. Tierney, B. Wathey, and J. Westman, "Microwave assisted organic synthesis—a review," Tetrahedron, vol. 57, pp. 9225-9283, 2001.
    [65] I. Bilecka and M. Niederberger, "Microwave chemistry for inorganic nanomaterials synthesis," Nanoscale, vol. 2, pp. 1358-1374, 2010.
    [66] 112 T. S. Jang, M. H. Ha, K. D. Yoo, and B. K. Kang, "Plasma process induced damages on n-MOSFET with plasma oxidized and nitrided gate dielectrics," Microelectronic Engineering, vol. 75, pp. 443-452, 2004.
    [67] M. Kim, J. Lee, D. Kim, and G. Min, "Novel degradation model of MOSFET thin gate oxide induced by VUV photons during high density plasma oxide deposition," Surface and Coatings Technology, vol. 228, Supplement 1, pp. S511-S515, 2013.
    [68] T. Pei-Jer, C. Yi-Yuan, and C.-L. Kuei-Shu, "Plasma charging damage on MOS devices with gate insulator of high-dielectric constant material," IEEE Electron Device Letters, vol. 22, pp. 527-529, 2001.
    [69] W.-T. Weng, Y.-J. Lee, H.-C. Lin, and T.-Y. Huang, "A comparison of plasma-induced damage on the reliability between high-k/metal-gate and SiO2/poly-gate complementary metal oxide semiconductor technology," Solid-State Electronics, vol. 54, pp. 368-377, 2010.
    [70] M. Kyung Seok, K. Chang Yong, Y. Ook Sang, P. Byoung Jae, K. Sung Woo, C. D. Young, et al., "Plasma induced damage of aggressively scaled gate dielectric (EOT«1.0nm) in metal gate/high-k dielectric CMOSFETs," in 2008 IEEE International Reliability Physics Symposium, pp. 723-724, 2008.
    [71] C. Shang-Jr, C. Steve Shao-Shiun, and L. Horng-Chih, "Charge Pumping Profiling Technique for the Evaluation of Plasma-Charging-Enhanced Hot-Carrier Effect in Short-N-Channel Metal-Oxide-Semiconductor Field-Effect Transistors," Japanese Journal of Applied Physics, vol. 41, p. 4493, 2002.
    [72] A. Le Gouil, O. Joubert, G. Cunge, T. Chevolleau, L. Vallier, B. Chenevier, et al., "Poly-Si∕TiN∕HfO2 gate stack etching in high-density plasmas," Journal of Vacuum Science & Technology B, vol. 25, pp. 767-778, 2007.
    [73] V. N. Bliznetsov, L. K. Bera, H. Y. Soo, N. Balasubramanian, R. Kumar, G. Q. Lo, et al., "Plasma Etching for Sub-20-nm TaN Metal Gates on High-k Dielectrics," IEEE Transactions on Semiconductor Manufacturing, vol. 20, pp. 143-149, 2007.
    [74] M. M. Hussain, S. C. Song, J. Barnett, C. Y. Kang, G. Gebara, B. Sassman, et al., "Plasma-Induced Damage in High-k/Metal Gate Stack Dry Etch," IEEE Electron Device Letters, vol. 27, pp. 972-974, 2006.

    下載圖示 校內:2023-08-01公開
    校外:2023-08-01公開
    QR CODE