| 研究生: |
張志仲 Chang, Jyh-Jong |
|---|---|
| 論文名稱: |
中風患者上肢動作功能之運動學評估與雙側性訓練分析 Kinematic Measure and Bilateral Training of the Paretic Upper Limb Motor Function for Patients with Stroke |
| 指導教授: |
蘇芳慶
Su, Fong-Chin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 中風 、伸手動作 、上肢動作功能評估 、兩側性訓練 、運動學分析 |
| 外文關鍵詞: | Stroke, Reaching, Bilateral training, Kinematic analysis, Upper limb motor function assessment |
| 相關次數: | 點閱:95 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中風病人上肢動作功能的恢復往往留下功能缺失,而影響日常生活功能的表現。近年由於神經科學的進展快速,中風病人的復健治療對大腦重組與動作功能恢復已有更進一步的瞭解,因此依實證結發展出一套有效的臨床評估及訓練中風病人上肢動作功能的方法,將有助於減少中風病人上肢動作功能的殘留缺失及提增日常生活功能的表現,近而促進中風病人的生活品質。
本研究主要目的在分析中風病人上肢伸手動作功能的運動學測量建構,並分析各運動學變項在區別正常人及中風個案伸手動作的運動學測量模式。同時結合雙側上肢同時動作、阻力動作、機械協助治療治療策略,設計出兩側性阻力引導動力式上肢功能訓練器。並分析其訓練慢性中風病人上肢動作功能的恢復效果。
研究結果發現上肢伸手動作的運動學測量主要有二個概念,概念一在反映動作速度與平順度,概念二在反映動作策略。而概念一之測量變數皆與臨床評估中風病人上肢動作功能及不正常肌力程度相關。在區別正常與不正常的伸手動作時,利用最大速度及運動單位數兩測量變項便可建立精簡的測量模式。同時發現中風病人在執行兩側同時伸手動作時並未有兩側上肢聯合的效應存在,運動學分析發現反而使患側上肢動作控制能力及品質變差,推論在執行兩側性伸手動時將增加中風病人對動作控制的注意力及困難度。
另本研究亦成功發展出結合兩側性上肢運動、阻力及機械協助治療之兩側性上肢阻力引導動力式上肢功能訓練器,初步結果發現慢性中風病人在接受為期8週,每週3次的治療後發現病人自覺患側上肢進步情形包括上肢肌力、動作能力、穩定性、細巧性、肌張力、顫抖及水腫等。進一步的前-後測及追蹤量化測量研究發現病人在接受兩側性上肢阻力引導動力式上肢功能訓練8週(每週3次)後,在患側上肢的臨床動作功能評估包括堆、拉肌力、動作能力、握力皆有明顯進步。而運動學參數包括運動時間、最大運動速度、標準化急動值、運動單位數、及達最大運動速度百分比等參數也皆有明顯進步。在8個星期的追蹤評估發現患側上肢的臨床動作功能評估雖未見明顯退步,但伸手動作的運動學參數卻顯示有明顯退步情形。
本研究成果除建立上肢伸手動作的運動學評估模式外,並設計出一套有利於中風患側上肢功能恢復之兩側性阻力引導動式上肢訓練器,研究成果未來將可推廣應用在臨床及社區之急、慢性中風病人上肢功能的復健治療及療效評估。
Patients with stroke often remain affected upper limb motor impairment and demonstrate disability in performing activities of daily living. Due to the growth of neuroscience, the relationships between brain reorganization and therapy-induced motor recovery have been further explored. Thus, the development of evaluation and therapeutic modality, based on neuroscience evidence, for the interventions of paretic upper motor recovery will contribute to the recovery of motor function, and consequently increase the quality of life for patients with stroke.
The primary purposes of this study are to analyze the constructs of kinematic measure in reaching, and to establish a kinematic model for discriminating normal and abnormal reaching. Besides, this study will design a purpose-built robot-aided bilateral force-induced isokinetic arm movement trainer for stroke upper limb motor rehabilitation. Then, we will further analyze the effects of our robot-aided device training on the paretic upper limb motor recovery for patients with chronic stroke.
Findings in this study showed that the kinematic reaching variables could be categorized into two common factors. Common factor I reflected the characteristics related to movement speed and smoothness, and common factor II reflected the characteristics related to motor control strategy in reaching. Variables loading on common factor I were significantly correlated with the clinical motor assessment scales (Fugl-Meyer motor assessment, Modified Ashworth scale), Peak velocity and number of movement unit can be used to established a parsimony model for discriminating between normal and abnormal reaching. Furthermore, our results showed interlimb coupling effect did not benefit the quality of motor control during bilateral reaching. It is hypothesized bilateral reaching was more attention demanded and challenge to patients with chronic stroke as compared to unilateral reaching.
Additionally, this study developed a robot-aided bilateral force-induced isokinetic arm movement trainer. A preliminary subject reports from the stroke subjects after 8 week’s training demonstrated improvements in strength, motor function, stability, muscle tone, tremor, hand dexterity and edema were reported. Further quantitative measures with pr-post and retention research design showed strength, motor function, and reaching performance were significantly improved after 8 weeks’ training. From the retention tests, the remaining effects only presented in strength and motor function but not in reaching kinematics.
This study developed a kinematic model and robot-aided device for the assessment and treatment of the paretic upper limb motor function for patients with stroke. These findings could be exploited to the clinical settings for stroke rehabilitation. The robot-aided device could also be applied to the long-term care and home care settings for maintaining and improving the paretic upper limb motor function for patients with chronic stroke.
1.Gresham GE, Fitzpatrick TE, Wolf PA, McNamara PM, Kannel WB, Dawber TR. Residual disability in survivors of stroke--the framingham study. N Engl J Med. 1975;293:954-956.
2.Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: The copenhagen stroke study. Arch Phys Med Rehabil. 1994;75:394-398.
3.Feys HM, De Weerdt WJ, Selz BE, Cox Steck GA, Spichiger R, Vereeck LE, Putman KD, Van Hoydonck GA. Effect of a therapeutic intervention for the hemiplegic upper limb in the acute phase after stroke: A single-blind, randomized, controlled multicenter trial. Stroke. 1998;29:785-792.
4.De Souza LH, Hewer RL, Miller S. Assessment of recovery of arm control in hemiplegic stroke patients. 1. Arm function tests. Int Rehabil Med. 1980;2:3-9.
5.Collin C, Wade D. Assessing motor impairment after stroke: A pilot reliability study. J Neurol Neurosurg Psychiatry. 1990;53:576-579.
6.Carr JH, Shepherd RB, Nordholm L, Lynne D. Investigation of a new motor assessment scale for stroke patients. Phys Ther. 1985;65:175-180.
7.Crow JL, Lincoln NB, Nouri FM, De Weerdt W. The effectiveness of emg biofeedback in the treatment of arm function after stroke. Int Disabil Stud. 1989;11:155-160.
8.Ramos E, Latash MP, Hurvitz EA, Brown SH. Quantification of upper extremity function using kinematic analysis. Arch Phys Med Rehabil. 1997;78:491-496
9.Fazekas G, Feher M, Kocsis L, Stefanik G, Boros Z, Jurak M. [use of kinematic parameters for assessing motor impairment due to central motor neuron damage]. Ideggyogy Sz. 2002;55:268-272.
10.Platz T, Prass K, Denzler P, Bock S, Mauritz KH. Testing a motor performance series and a kinematic motion analysis as measures of performance in high-functioning stroke patients: Reliability, validity, and responsiveness to therapeutic intervention. Arch Phys Med Rehabil. 1999;80:270-277.
11.Olsen TS. Arm and leg paresis as outcome predictors in stroke rehabilitation. Stroke. 1990;21:247-251.
12.Olsen TS. Outcome following occlusion of the middle cerebral artery. Acta Neurol Scand. 1991;83:254-258.
13.Olsen TS. [rehabilitation of stroke patients. Possibilities, duration and effect]. Nord Med. 1991;106:333-335, 339.
14.Nudo RJ, Milliken GW. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol. 1996;75:2144-2149.
15.Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272:1791-1794.
16.Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci. 1996;16:785-807.
17.Kunkel A, Kopp B, Muller G, Villringer K, Villringer A, Taub E, Flor H. Constraint-induced movement therapy for motor recovery in chronic stroke patients. Arch Phys Med Rehabil. 1999;80:624-628.
18.Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke. 2000;31:1210-1216
19.Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E. Increased cortical representation of the fingers of the left hand in string players. Science. 1995;270:305-307.
20.Pantev C, Engelien A, Candia V, Elbert T. Representational cortex in musicians. Plastic alterations in response to musical practice. Ann N Y Acad Sci. 2001;930:300-314.
21.Wu T-I, Chang J-H, Chang J-J, Su F-C. Effects of button size on reaching movement in children with cerebral palsy. International Conference on Biomechanics combined with Annual Scientific Meeting of Taiwanese Society of Biomechanics. 2001
22.Wu C, Trombly CA, Lin K, Tickle-Degnen L. A kinematic study of contextual effects on reaching performance in persons with and without stroke: Influences of object availability. Arch Phys Med Rehabil. 2000;81:95-101.
23.Trombly CA, Wu CY. Effect of rehabilitation tasks on organization of movement after stroke. Am J Occup Ther. 1999;53:333-344.
24.Rand MK, Shimansky Y, Stelmach GE, Bracha V, Bloedel JR. Effects of accuracy constraints on reach-to-grasp movements in cerebellar patients. Exp Brain Res. 2000;135:179-188.
25.Fasoli SE, Trombly CA, Tickle-Degnen L, Verfaellie MH. Effect of instructions on functional reach in persons with and without cerebrovascular accident. Am J Occup Ther. 2002;56:380-390.
26.Lin KC, Wu CY, Trombly CA. Effects of task goal on movement kinematics and line bisection performance in adults without disabilities. Am J Occup Ther. 1998;52:179-187.
27.Volman MJ, Wijnroks A, Vermeer A. Effect of task context on reaching performance in children with spastic hemiparesis. Clin Rehabil. 2002;16:684-692
28.Duff S, Shumway-Cook A, Woollacott MH. Clinical management of the patient with reach, grasp, and manipulation disorders. In: Shumway-Cook A, Woollacott MH, eds. Motor control theory and practical applications. Baltimore, Maryland: Lippincott Williams & Wilkins; 2001:517-540.
29.Fetters L. Measurement and treatment in cerebral palsy: An argument for a new approach. Phys Ther. 1991;71:244-247.
30.Rash GS, Belliappa PP, Wachowiak MP, Somia NN, Gupta A. A demonstration of validity of 3-d video motion analysis method for measuring finger flexion and extension. J Biomech. 1999;32:1337-1341.
31.Kluzik J, Fetters L, Coryell J. Quantification of control: A preliminary study of effects of neurodevelopmental treatment on reaching in children with spastic cerebral palsy. Phys Ther. 1990;70:65-76; discussion 76-68
32.Yang N, Zhang M, Huang C, Jin D. Motion quality evaluation of upper limb target-reaching movements. Med Eng Phys. 2002;24:115-120.
33.Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7:13-31
34.Bohannon RW, Smith MB. Interrater reliability of a modified ashworth scale of muscle spasticity. Phys Ther. 1987;67:206-207
35.Wu C, Trombly CA, Lin K, Tickle-Degnen L. Effects of object affordances on reaching performance in persons with and without cerebrovascular accident. Am J Occup Ther. 1998;52:447-456
36.Suputtitada A, Suwanwela NC, Tumvitee S. Effectiveness of constraint-induced movement therapy in chronic stroke patients. J Med Assoc Thai. 2004;87:1482-1490
37.Nelson WL. Physical principles for economies of skilled movements. Biol Cybern. 1983;46:135-147.
38.Richardson MJ, Flash T. Comparing smooth arm movements with the two-thirds power law and the related segmented-control hypothesis. J Neurosci. 2002;22:8201-8211
39.Cunningham CL, Stoykov ME, Walter CB. Bilateral facilitation of motor control in chronic hemiplegia. Acta Psychol (Amst). 2002;110:321-337
40.Chang JJ, Wu TI, Wu WL, Su FC. Kinematical measure for spastic reaching in children with cerebral palsy. Clin Biomech (Bristol, Avon). 2005;20:381-388
41.Flash T, Inzelberg R, Schechtman E, Korczyn AD. Kinematic analysis of upper limb trajectories in parkinson's disease. Exp Neurol. 1992;118:215-226
42.Schneider K, Zernicke RF. Jerk-cost modulations during the practice of rapid arm movements. Biol Cybern. 1989;60:221-230.
43.Teulings HL, Contreras-Vidal JL, Stelmach GE, Adler CH. Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp Neurol. 1997;146:159-170.
44.Brooks VB, Kennedy PR, Ross HG. Movement programming depends on understanding of behavioral requirements. Physiol Behav. 1983;31:561-563.
45.Marteniuk RG, MacKenzie CL, Jeannerod M, Athenes S, Dugas C. Constraints on human arm movement trajectories. Can J Psychol. 1987;41:365-378.
46.Nagasaki H. Asymmetric velocity and acceleration profiles of human arm movements. Exp Brain Res. 1989;74:319-326.
47.Alberts JL, Saling M, Adler CH, Stelmach GE. Disruptions in the reach-to-grasp actions of parkinson's patients. Exp Brain Res. 2000;134:353-362.
48.Verschueren SM, Swinnen SP, Cordo PJ, Dounskaia NV. Proprioceptive control of multijoint movement: Unimanual circle drawing. Exp Brain Res. 1999;127:171-181.
49.Trombly CA. Deficits of reaching in subjects with left hemiparesis: A pilot study. Am J Occup Ther. 1992;46:887-897.
50.Trombly CA. Observations of improvement of reaching in five subjects with left hemiparesis. J Neurol Neurosurg Psychiatry. 1993;56:40-45.
51.McCrea PH, Eng JJ, Hodgson AJ. Biomechanics of reaching: Clinical implications for individuals with acquired brain injury. Disabil Rehabil. 2002;24:534-541
52.Bullock D, Grossberg S. Neural dynamics of planned arm movements: Emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev. 1988;95:49-90.
53.Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, Stein J, Hogan N. Movement smoothness changes during stroke recovery. J Neurosci. 2002;22:8297-8304
54.Krebs HI, Aisen ML, Volpe BT, Hogan N. Quantization of continuous arm movements in humans with brain injury. Proc Natl Acad Sci U S A. 1999;96:4645-4649
55.Stevens J. Applied multivariate statistics for the social sciences. Mahwah, NJ: Lawrence Erlbaum Associates; 2002.
56.Edwards MG, Humphreys GW. Pointing and grasping in unilateral visual neglect: Effect of on-line visual feedback in grasping. Neuropsychologia. 1999;37:959-973
57.Castiello U, Bennett KM, Bonfiglioli C, Peppard RF. The reach-to-grasp movement in parkinson's disease before and after dopaminergic medication. Neuropsychologia. 2000;38:46-59.
58.Poizner H, Feldman AG, Levin MF, Berkinblit MB, Hening WA, Patel A, Adamovich SV. The timing of arm-trunk coordination is deficient and vision-dependent in parkinson's patients during reaching movements. Exp Brain Res. 2000;133:279-292.
59.Fetters L, Kluzik J. The effects of neurodevelopmental treatment versus practice on the reaching of children with spastic cerebral palsy. Phys Ther. 1996;76:346-358
60.Portney LG, M.P. W. Power analysis and determination of sample size. In: Davis KW, ed. Foundations of clinical research: Applications to practice. Norwalk: APPLETON & LANGE; 1997:651-667.
61.Levin MF. Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain. 1996;119:281-293.
62.Gowland C, deBruin H, Basmajian JV, Plews N, Burcea I. Agonist and antagonist activity during voluntary upper-limb movement in patients with stroke. Phys Ther. 1992;72:624-633
63.Small SL, Hlustik P, Noll DC, Genovese C, Solodkin A. Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain. 2002;125:1544-1557
64.Jones TA, Schallert T. Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage. Brain Res. 1992;581:156-160
65.Staines WR, McIlroy WE, Graham SJ, Black SE. Bilateral movement enhances ipsilesional cortical activity in acute stroke: A pilot functional mri study. Neurology. 2001;56:401-404.
66.Johansen-Berg H, Dawes H, Guy C, Smith SM, Wade DT, Matthews PM. Correlation between motor improvements and altered fmri activity after rehabilitative therapy. Brain. 2002;125:2731-2742
67.Nelles G, Jentzen W, Jueptner M, Muller S, Diener HC. Arm training induced brain plasticity in stroke studied with serial positron emission tomography. Neuroimage. 2001;13:1146-1154
68.Jones TA, Schallert T. Use-dependent growth of pyramidal neurons after neocortical damage. J Neurosci. 1994;14:2140-2152
69.Mudie MH, Matyas TA. Can simultaneous bilateral movement involve the undamaged hemisphere in reconstruction of neural networks damaged by stroke? Disabil Rehabil. 2000;22:23-37.
70.Whitall J, McCombe Waller S, Silver KH, Macko RF. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke. 2000;31:2390-2395.
71.Brinkman C, Porter R. Supplementary motor area in the monkey: Activity of neurons during performance of a learned motor task. J Neurophysiol. 1979;42:681-709
72.Cauraugh JH, Kim S. Two coupled motor recovery protocols are better than one: Electromyogram-triggered neuromuscular stimulation and bilateral movements. Stroke. 2002;33:1589-1594
73.Cauraugh JH, Kim SB. Chronic stroke motor recovery: Duration of active neuromuscular stimulation. J Neurol Sci. 2003;215:13-19
74.Walter CB, Swinnen, S. P. Kinetic attraction during bimanual coordination. Journal of Motor Behavior. 1990;22:451-473
75.Walter CB, Swinnen SP. Asymmetric interlimb interference during the performance of a dynamic bimanual task. Brain Cogn. 1990;14:185-200
76.Hatzitaki V, McKinley P. Effect of single-limb inertial loading on bilateral reaching: Interlimb interactions. Exp Brain Res. 2001;140:34-45
77.Jackson GM, Jackson SR, Kritikos A. Attention for action: Coordinating bimanual reach-to-grasp movements. Br J Psychol. 1999;90 ( Pt 2):247-270
78.Jackson GM, German K, Peacock K. Functional coupling between the limbs during bimanual reach-to-grasp movements. Hum Mov Sci. 2002;21:317-333
79.Platz T, Bock S, Prass K. Reduced skilfulness of arm motor behaviour among motor stroke patients with good clinical recovery: Does it indicate reduced automaticity? Can it be improved by unilateral or bilateral training? A kinematic motion analysis study. Neuropsychologia. 2001;39:687-698
80.Mattingley JB, Phillips JG, Bradshaw JL. Impairments of movement execution in unilateral neglect: A kinematic analysis of directional bradykinesia. Neuropsychologia. 1994;32:1111-1134
81.Robertson IH, North NT. One hand is better than two: Motor extinction of left hand advantage in unilateral neglect. Neuropsychologia. 1994;32:1-11
82.Mudie MH, Matyas TA. Responses of the densely hemiplegic upper extremity to bilateral training. Neurorehabil Neural Repair. 2001;15:129-140
83.Lewis GN, Byblow WD. Neurophysiological and behavioural adaptations to a bilateral training intervention in individuals following stroke. Clin Rehabil. 2004;18:48-59
84.Butefisch C, Hummelsheim H, Denzler P, Mauritz KH. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci. 1995;130:59-68.
85.Parry RH, Lincoln NB, Vass CD. Effect of severity of arm impairment on response to additional physiotherapy early after stroke. Clin Rehabil. 1999;13:187-198.
86.Luft AR, McCombe-Waller S, Whitall J, Forrester LW, Macko R, Sorkin JD, Schulz JB, Goldberg AP, Hanley DF. Repetitive bilateral arm training and motor cortex activation in chronic stroke: A randomized controlled trial. Jama. 2004;292:1853-1861
87.Di Stefano M, Morelli M, Marzi CA, Berlucchi G. Hemispheric control of unilateral and bilateral movements of proximal and distal parts of the arm as inferred from simple reaction time to lateralized light stimuli in man. Exp Brain Res. 1980;38:197-204
88.Steenbergen B, Hulstijn W, de Vries A, Berger M. Bimanual movement coordination in spastic hemiparesis. Exp Brain Res. 1996;110:91-98
89.Franz EA, Packman T. Fooling the brain into thinking it sees both hands moving enhances bimanual spatial coupling. Exp Brain Res. 2004
90.Stinear JW, Byblow WD. Rhythmic bilateral movement training modulates corticomotor excitability and enhances upper limb motricity poststroke: A pilot study. J Clin Neurophysiol. 2004;21:124-131
91.Cirstea MC, Ptito A, Levin MF. Arm reaching improvements with short-term practice depend on the severity of the motor deficit in stroke. Exp Brain Res. 2003;152:476-488
92.Pope-Davis SA. Proprioceptive neuromuscular facilitation approach. In: Pedretti LW, Early MB, eds. Occupational therapy--practice skills for physical dysfunction. St. Louis: Mosby; 2001:606-623.
93.Pedretti LW. Movement therapy: The brunnstrom approach to treatment of hemiplegia. In: Pedretti LW, Early MB, eds. Occupational therapy -- practice skills for physical dysfunction. St. Louis: Mosby; 2001:588-605.
94.Davis JZ. Neurodevelopmental treatment: The bobath approach. In: Pedretti LW, Early MB, eds. Occupational therapy--practice skills for physical dysfunction. St. Louis: Mosby; 2001:624-640.
95.Volpe BT, Krebs HI, Hogan N, Edelsteinn L, Diels CM, Aisen ML. Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology. 1999;53:1874-1876.
96.Krebs HI, Hogan N, Volpe BT, Aisen ML, Edelstein L, Diels C. Overview of clinical trials with mit-manus: A robot-aided neuro-rehabilitation facility. Technol Health Care. 1999;7:419-423.
97.Volpe BT, Krebs HI, Hogan N, Edelstein OL, Diels C, Aisen M. A novel approach to stroke rehabilitation: Robot-aided sensorimotor stimulation. Neurology. 2000;54:1938-1944.
98.Krebs HI, Volpe BT, Aisen ML, Hogan N. Increasing productivity and quality of care: Robot-aided neuro-rehabilitation. J Rehabil Res Dev. 2000;37:639-652.
99.Andrews AW, Bohannon RW. Distribution of muscle strength impairments following stroke. Clin Rehabil. 2000;14:79-87.
100.Weiss A, Suzuki T, Bean J, Fielding RA. High intensity strength training improves strength and functional performance after stroke. Am J Phys Med Rehabil. 2000;79:369-376; quiz 391-364
101.Sharp SA, Brouwer BJ. Isokinetic strength training of the hemiparetic knee: Effects on function and spasticity. Arch Phys Med Rehabil. 1997;78:1231-1236.
102.Bohannon RW, Warren ME, Cogman KA. Motor variables correlated with the hand-to-mouth maneuver in stroke patients. Arch Phys Med Rehabil. 1991;72:682-684.
103.Boissy P, Bourbonnais D, Carlotti MM, Gravel D, Arsenault BA. Maximal grip force in chronic stroke subjects and its relationship to global upper extremity function. Clin Rehabil. 1999;13:354-362
104.Bourbonnais D, Bilodeau S, Lepage Y, Beaudoin N, Gravel D, Forget R. Effect of force-feedback treatments in patients with chronic motor deficits after a stroke. Am J Phys Med Rehabil. 2002;81:890-897
105.Cuadrado ML, Arias JA. Bilateral movement enhances ipsilesional cortical activity in acute stroke: A pilot functional mri study. Neurology. 2001;57:1740-1741
106.Levy CE, Nichols DS, Schmalbrock PM, Keller P, Chakeres DW. Functional mri evidence of cortical reorganization in upper-limb stroke hemiplegia treated with constraint-induced movement therapy. Am J Phys Med Rehabil. 2001;80:4-12
107.McCombe Waller S, Whitall J. Fine motor control in adults with and without chronic hemiparesis: Baseline comparison to nondisabled adults and effects of bilateral arm training. Arch Phys Med Rehabil. 2004;85:1076-1083
108.Rosenfalck A, Andreassen S. Impaired regulation of force and firing pattern of single motor units in patients with spasticity. J Neurol Neurosurg Psychiatry. 1980;43:907-916
109.Gemperline JJ, Allen S, Walk D, Rymer WZ. Characteristics of motor unit discharge in subjects with hemiparesis. Muscle Nerve. 1995;18:1101-1114
110.Canning CG, Ada L, Adams R, O'Dwyer NJ. Loss of strength contributes more to physical disability after stroke than loss of dexterity. Clin Rehabil. 2004;18:300-308
111.Chae J, Yang G, Park BK, Labatia I. Muscle weakness and cocontraction in upper limb hemiparesis: Relationship to motor impairment and physical disability. Neurorehabil Neural Repair. 2002;16:241-248
112.Stein J, Krebs HI, Frontera WR, Fasoli SE, Hughes R, Hogan N. Comparison of two techniques of robot-aided upper limb exercise training after stroke. Am J Phys Med Rehabil. 2004;83:720-728
113.Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83:952-959
114.Fasoli SE, Krebs HI, Stein J, Frontera WR, Hogan N. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil. 2003;84:477-482
115.Volpe BT, Krebs HI, Hogan N. Robot-aided sensorimotor training in stroke rehabilitation. Adv Neurol. 2003;92:429-433
116.Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML. Computerized arm training improves the motor control of the severely affected arm after stroke: A single-blinded randomized trial in two centers. Stroke. 2005;36:1960-1966
117.Engardt M, Knutsson E, Jonsson M, Sternhag M. Dynamic muscle strength training in stroke patients: Effects on knee extension torque, electromyographic activity, and motor function. Arch Phys Med Rehabil. 1995;76:419-425
118.Heller A, Wade DT, Wood VA, Sunderland A, Hewer RL, Ward E. Arm function after stroke: Measurement and recovery over the first three months. J Neurol Neurosurg Psychiatry. 1987;50:714-719.
119.Kamper DG, McKenna-Cole AN, Kahn LE, Reinkensmeyer DJ. Alterations in reaching after stroke and their relation to movement direction and impairment severity. Arch Phys Med Rehabil. 2002;83:702-707
120.Stinear JW, Byblow WD. Disinhibition in the human motor cortex is enhanced by synchronous upper limb movements. J Physiol. 2002;543:307-316
121.Woldag H, Lukhaup S, Renner C, Hummelsheim H. Enhanced motor cortex excitability during ipsilateral voluntary hand activation in healthy subjects and stroke patients. Stroke. 2004;35:2556-2559
122.Ghez C, Sainburg R. Proprioceptive control of interjoint coordination. Can J Physiol Pharmacol. 1995;73:273-284
123.Rose DK, Winstein CJ. Bimanual training after stroke: Are two hands better than one? Top Stroke Rehabil. 2004;11:20-30
124.Thielman GT, Dean CM, Gentile AM. Rehabilitation of reaching after stroke: Task-related training versus progressive resistive exercise. Arch Phys Med Rehabil. 2004;85:1613-1618
125.Renner CI, Woldag H, Atanasova R, Hummelsheim H. Change of facilitation during voluntary bilateral hand activation after stroke. J Neurol Sci. 2005;239:25-30
126.von Hofsten C. Structuring of early reaching movements: A longitudinal study. J Mot Behav. 1991;23:280-292
127.Flash T, Hogan N. The coordination of arm movements: An experimentally confirmed mathematical model. J Neurosci. 1985;5:1688-1703.