簡易檢索 / 詳目顯示

研究生: 王鍾元
Wang, Jhong-Yuan
論文名稱: 煙火及螢火蟲演算法於自由空間金屬物體成像之研究
Electromagnetic Imaging for a Conducting Object in Free Space using Firework and Firefly Alogorithms
指導教授: 李坤洲
Lee, Kun-Chou
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 78
中文關鍵詞: 電磁成像動差法煙火演算法螢火蟲演算法
外文關鍵詞: Electromagnetic imaging, Moment Method, Firework algorithm, Firefly algorithm
相關次數: 點閱:94下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是研究金屬目標導體的電磁成像,其目的是藉由量測到的散射場來重建目標導體之形狀。在電磁成像中,目標物的形狀是以傅立葉級數表示,藉由猜測計算傅立葉級數之係數,即可求出目標物之形狀。本研究中假設環境為自由空間,且所有的散射場都是藉由動差法來做數值計算而得,以不同方向入射的平面波照射目標物,對於每個入射方向,以等角、等距的位置來蒐集散射電場,這些位置的散射電場可藉由實際量測或理論計算而得到。初始猜測目標物形狀的傅立葉級數之係數,接著藉由煙火演算法或螢火蟲演算法來更新係數,即逼近目標物之形狀函數,且其在相同的量測位置計算散射電場,並將計算出的散射電場與真正的散射電場進行比較,直到散射電場的相對誤差低於預設值,此時,目標物的形狀函數確定,換句話說,目標物的形狀被成功重建,即實現電磁成像技術。數值模擬結果顯示出,該電磁成像技術可以成功重建金屬目標物之形狀。煙火演算法與螢火蟲演算法本質上是一種進化的優化演算法,它不需要任何梯度運算,使得它可以實現複雜的優化系統甚至是黑盒子系統。

    This paper expounds on the reconstruction of electromagnetic images for two-dimensional metal conductor cylinders in a free space. The inverse scattering method proposed herein works as follows: 1) by a rigorous mathematical method, derive a nonlinear equation set according to the received scattered field and appropriate boundary conditions; 2) by a discrete integral equation with the method of moment, obtain and solve a matrix equation; 3) based on the obtained scattering formula, translate the image reconstruction problem into an optimization problem according to the related data of the scattered field by using the firework algorithm and firefly algorithm combined with a differential strategy, thus determining the shape of the cylinder. The study used TM polarized waves to reconstruct the image of the object. As we can tell from the simulation results, the more times the algorithm iterates, the more accurate the results of the image will be; thus, it indicates the reaching process of reconstruction of different iterations. Moreover, with the decrease of fitness value, the reconstruction of an object is proven to be better.

    摘要 I 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XII 第一章 緒論 1 1.1研究背景與動機 1 1.2文獻探討 2 1.3研究貢獻 4 1.4使用軟體 4 1.5論文大鋼 5 第二章 煙火演算法 6 2.1介紹 6 2.1.1爆炸算子 8 2.1.2變異算子 9 2.1.3映射規則 9 2.1.4選擇策略 9 2.2煙火演算法的實現 10 2.2.1爆炸算子 11 2.2.2變異算子 12 2.2.3映射規則 13 2.2.4選擇策略 13 2.3煙火演算法的搜尋能力 14 第三章 自由空間金屬成像 19 3.1自由空間正散射理論推導 19 3.2動差法 21 3.2.1介紹 21 3.2.2動差法之應用 22 3.2.2圓柱金屬導體 25 3.3應用PSO演算法於自由空間逆散射 27 3.3.1形狀函數 27 3.3.2適應函數介紹 27 3.3.3形狀誤差 28 3.4數值模擬分析 28 第四章 螢火蟲演算法 49 4.1介紹 49 4. 2螢火蟲演算法的數學描述與分析 50 4. 3螢火蟲演算法的搜尋能力 52 4. 4數值模擬分析 52 第五章 結論 72 5.1結論 72 5.2未來展望 73 參考文獻 75

    [1] R. M. Lewis, "Physical optics inverse diffraction," IEEE Trans.Antennas Propagat., vol. 17, pp. 308-314, May 1969.
    [2] N. N. Bojarski, "A survey of the physical optics inverse scattering identity," IEEE Trans. Antennas Propagat., vol. 30, pp. 980-989,Sept. 1982.
    [3] T. H. Chu and D. B. Lin, "Microwave diversity imaging of perfectly conducting objects in the near-field region," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 480-487, Mar. 1991.
    [4] R. F. Harrmgton, Field Computation by Moment Method, New York: Macmillan, 1968.
    [5] A. Roger, "Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem," IEEE Trans. Antennas Propagate., vol. AP-29,pp.232-238, Mar. 1981.
    [6] W. Tobocman, "Inverse acoustic wave scattering in two dimensions from impenetrable targets," Inverse Problems, vol. 5,pp. 1131-1144,Dec. 1989.
    [7] C. C. Chiu and Y. M. Kiang, "Electromagnetic imaging for an imperfectly conducting cylinder," IEEE Trans. Microwave Theory Tech, vol. 39, pp. 1631- 1639, Sept. 1991.
    [8] C. C. Chiu and P. T. Liu, "Image reconstruction of a perfectly conducting cylinder by the genetic algorithm," IEE Proceedings-Microwaves Antennas and Propagation, vol. 143, pp. 249-253, Jun 1996.
    [9] C. C. Chiu, C. H. Chen, and Y. S. Fan, "Image Reconstruction of a Buried Conductor by Modified Particle Swarm Optimization," IETE Journal of Research, vol. 58, pp. 284-291, Jul-Aug 2012.
    [10] Y. H. Lee, Y. T. Cheng, C. C. Chiu, and S. P. Chang, "Microwave imaging for half-space imperfect conductors," Nondestructive Testing and Evaluation, vol. 30, pp. 49-62, Jan 2015.
    [11] C. L. Li, S. H. Chen, C. M. Yang, and C. C. Chiu, "Image reconstruction for a partially immersed perfectly conducting cylinder using the steady state genetic algorithm," Radio Science, vol. 39, p. 10, Apr 2004.
    [12] Xin-She Yang, "Firefly Algorithms for Multimodal Optimization ",ICSI 2010, Part I, LNCS 6145, pp. 355–364, 2010Ying Tan and Yuanchun Zhu, "Fireworks Algorithm for Optimization ", ICSI 2010, Part I, LNCS 6145, pp. 355–364, 2010.
    [13] G. P. Otto and W. C. Chew, "MICROWAVE INVERSE SCATTERING - LOCAL SHAPE FUNCTION IMAGING FOR IMPROVED RESOLUTION OF STRONG SCATTERERS," IEEE Transactions on Microwave Theory and Techniques, vol. 42, pp. 137-141, Jan 1994.
    [14] Roger. F. Harrmgton, "Field Computation by Moment Method," IEEE Press, 1992.
    [15] Naqvi, Q. A., A. A. Rizvi, and Z. Yaqoob, "Corrections to asymptotic solutions for the scattered fields of plane wave by a cylindrical obstacle buried in a dielectric half-space," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 5, 2000.
    [16] C. M. Butler, X. B. Xu, and A. W. Glisson, "Current induced on a conducting cylinder near the planer interface between two semi-infinite half-spaces," IEEE Transactions on Antennas and Propagation, vol. 33, pp. 616-624, 1985.
    [17] C. Deyun, S. Lei, Z. Zhen, and Y. Xiaoyang, "An image reconstruction algorithm based on artificial fish-swarm for electrical capacitance tomography system," in Strategic Technology (IFOST), 2011 6th International Forum on, 2011, pp. 1190-1194.
    [18] M. Andreasen, "Scattering from parallel metallic cylinders with arbitrary cross sections," IEEE transactions on Antennas and Propagation, vol. 12, pp. 746-754, 1964.
    [19] T. Low and B. Chao, "The use of finite elements and neural networks for the solution of inverse electromagnetic problems," IEEE transactions on magnetics, vol. 28, pp. 2811-2813, 1992.
    [20] A. Kirsch and R. Kress, "Two methods for solving the inverse acoustic scattering problem," Inverse problems, vol. 4, p. 749, 1988.
    [21] F. Hettlich, "Two methods for solving an inverse conductive scattering problem," Inverse Problems, vol. 10, p. 375, 1994.
    [22] R. Kleinman and P. den Berg, "Two‐dimensional location and shape reconstruction," Radio Science, vol. 29, pp. 1157-1169, 1994.
    [23] M. Donelli and A. Massa, "Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 1761-1776, 2005.
    [24] G. P. Otto and W. C. Chew, "Microwave inverse scattering-local shape function imaging for improved resolution of strong scatters, " IEEE Transactions on Microwave Theory Tech, vol. 42, pp. 137-141,Ian , 2005.

    無法下載圖示 校內:2022-07-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE