| 研究生: |
郭展綱 Guo, Jhan-Gang |
|---|---|
| 論文名稱: |
燒結促進劑對0.9CaWO4-0.1Mg2SiO4介電陶瓷之影響與應用 The Effect and Application of 0.9CaWO4-0.1Mg2SiO4 Dielectric Ceramics Added Sintering Aids |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 介電陶磁 、介電常數 |
| 外文關鍵詞: | dielectric ceramics, dielectric constant |
| 相關次數: | 點閱:46 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文內討論0.9CaWO4-0.1Mg2SiO4介電陶瓷材料,分別添加燒結促進劑V2O5、B2O3、及CuO不同含量時,產生的液相對其微波特性之影響。實驗結果顯示,適當添加燒結促進劑可降低0.9CaWO4-0.1Mg2SiO4之燒結溫度。當添加0.25wt%之V2O5時有最佳的微波介電特性,其εr 值為約10,Q*f值約為70000,共振頻率溫度係數(τf)約為-53(ppm/oC),並可將燒結溫度由1200℃降低至1080℃。
另外,本論文以FR4、Al2O3、0.9CaWO4-0.1Mg2SiO4為基板,製作設計一使用增強型調整殘段耦合環型共振器之帶通濾波器,其中心頻率為2.45GHz,頻寬約為5%。利用軟體模擬並與實作的結果作特性上之比較。
The effects of microwave dielectric properties of 0.9CaWO4-0.1Mg2SiO4 adding different amounts of sintering aids V2O5, B2O3, and CuO which could produce liquid phase have been discussed in this paper. The results show that adding sintering aids can lower the sintering temperature of 0.9CaWO4-0.1Mg2SiO4 ceramics. The best properties of the microwave dielectric are εr = 10, Q*f = 70000, and τf = -53, as 0.25wt% V2O5 additions. And lower the sintering temperature from 1200℃ to 1080℃.
In addition, a bandpass filter using ring resonators with enhanced-coupling tuning stubs on FR4, Al2O3, and 0.9CaWO4-0.1Mg2SiO4 substrates have been design. The center frequency is 2.45GHz, the bandwidth is 5%. And we compared the result of the simulation with the result of the measurement of the performance.
[1] I. H. Park, B. S. Kim, and K. Y. Kim, B. H. Kim, “Microwave dielectric properties and mixture behavior of CaWO4-Mg2SiO4 Ceramics,” Jpn. J. Appl. Phys., vol. 40, pp. 4956-4960, Aug. 2001.
[2] G.. Burns, Solid state physics., Orlando: Academic Press, 1985, p. 461.
[3] K. Wankino, H. Murata, and H. Tamura, “Far infrared reflection spectra of Ba(Zn,Ta)O3-BaZrO3 dielectric resonator material,” J. Am. Ceram. Soc., vol. 69, pp. 34-37, Jan. 1986.
[4] W. E. Courtney, “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators,” IEEE. Trans. Microwave Theory Tech., vol. MTT-18, pp. 476-485, Aug. 1970.
[5] David M. Pozar, Microwave engineering., Reading: Addison-Wesley, 1998, ch.1.
[6] D. Kajfez, “Computed model field distribution for isolated dielectric resonators,” IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
[7] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave System News., vol. 13, pp. 152-161, 1983.
[8] D. Kajfez, and P. Guillon, Dielectric resonators., New York: Artech House,
1989.
[9] W. J. Huppmann, and G. Petzow, Sintering processes., New York: Plenum Press, pp. 189-202, 1979.
[10] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York: Consultants Bureau, 1970, ch. 4.
[11] K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy(1984).
[12] J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-phase sintering of jagged particles,” J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul. 1970.
[13] W. J. Huppmann, and G. Petzow, Ber. bunnsenges phys. chem., 82, pp. 308, 1978.
[14] R. M. German, Liquid phase sintering., New York: Plenum Press, 1985, ch. 4.
[15] J. H. Jean, and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe alloys,” J. Mater. Sci., vol. 24, pp. 500-504, Feb. 1989.
[16] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI design techniques for analog and digital circuits., New York: McGraw-Hill, 1990, pp. 674-685.
[17] L. A. Trinogga, Guo Kaizhou, and I. C. Hunter, Practical microstrip circuit design., UK: Ellis Horwood, 1991.
[18] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
[19] E. O. Hammerstard, in Proceedings of the european microwave conference., pp. 268-272, 1975.
[20] E. J. Denlinger, “Losses of microstrip lines,” IEEE. Trans. Microwave Theory Tech., vol. MIT-28, pp. 513–522, Jun. 1980
[21] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
[22] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance- mattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
[23] V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 573-578, Sep. 1980.
[24] 張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
[25] J. S. Hong, and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2099-2109, Nov. 1996.
[26] T. Edwards, Foundations for microstrip circuit design, second edition., UK: Wiley, 1991.
[27] K. Chang, Microwave ring circuits and antennas., New York: wiley, 1996, ch. 3, 7 and 12.
[28] G. K. Gopalakrishnan, and K. Chang, “Novel excitation scheme for the microstrip ring resonator with lower insertion loss,” Electron Lett., vol. 30, no. 2, pp. 148-149, Jan. 1994.
[29] J. S. Hong, and M. J. Lancaster, “Bandpass characteristics of new dual-mode microstrip square loop resonator,” Electron Lett., vol. 31, no. 11, pp. 891-892, May 1995.
[30] J. Y. Park, and L. C. Lee, “A new enhanced coupling structure of microstrip ring with two coupled line and a slit,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 805-808, Jun. 1998.
[31] W. C. Jung, H, J, Park, and J. C. Lee, “Microstrip ring bandpass filter with new interdigital side-coupling structure,” in Asia-Pacific Microwave Conf., vol.3, pp. 678-681, Nov. 1999.
[32] L. H. Hsieh, and K. Chang, “High-efficiency piezoelectric-transducer-tuned feedback microstrip ring-resonator oscillators operating at high resonant frequencies,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 4, pp. 1141-1145, Apr. 2003.
[33] L. H. Hsieh, and K. Chang, “Slow-wave bandpass filters using ring or stepped-impendence hairpin resonators,” IEEE Trans. Microwave Theory Tech., vol.50, pp. 1795-1800, Jul. 2002.
[34] L. H. Hsieh, and K. Chang, “Dual-mode quasi-elliptic-function bandpass filters using ring resonators with enhanced-coupling tuning stubs,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 5, pp. 1340-1345, May 2002.
[35] Y. Kobayashi, and N. Katoh, “Microwave measurement of dielectric properties of low-loss materials by dielectric rod resonator method,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 586-592, 1985.
[36] O. V. Karpova, Soviet Phys., vol. 1, p. 220, 1959.
[37] S. H. Cha, IEEE. Trans. Microwave Theory Tech., vol. MTT-33, p.519, 1985.
[38] P. Wheless, and D. Kajfez “The use of higher resonant modes in measuring the dialectric constant of Dielectric Resonators,” IEEE MTT-S Symposium Dig., pp. 473-476, 1985.
[39] B. W. Hakki, and P. D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range,” IEEE. Trans. Microwave Theory Tech., vol. MTT-8, pp. 402-410, 1960
[40] Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE. Trans. Microwave Theory Tech., vol. MTT-28, pp. 1077-1085, 1980.