簡易檢索 / 詳目顯示

研究生: 張芸甄
Chang, Yun-Chen
論文名稱: 具抑制副作用之自動對比度及飽和度增強暨其高效率開放計算語言實踐
Side Effects Suppressed Auto Contrast and Saturation Enhancement with Efficient Open-CL Realization
指導教授: 謝明得
Shieh, Ming-Der
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 56
中文關鍵詞: 對比度增強飽和度增強開放計算語言
外文關鍵詞: contrast enhancement, saturation enhancement, OpenCL
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今智慧型裝置如手機、電視等產品普遍發達的情況下,影像增強技術顯得越來越重要。影像即時處理以及低複雜度的設計在影像增強的考量越來越受到重視。直方圖等化(histogram equalization)是最普遍被用來實踐對比度增強的方法,然而直方圖等化有不少缺點,像是影像處理完畢後過度增強,或是有其他副作用的效果產生。為了要解決直方圖等化所造成的缺點,我們提出一個可自動調整對比度的機制伴隨著副作用的去除,以及將人眼視覺(human visual system)納入考量,如此一來我們便能有效地解決傳統直方圖等化會遇到的問題。在對比度增強過後,我們結合飽和度增強來補償對比度增強過後會出現的飽和度下降的現象。
    此外,我們將演算法結合開放計算語言(Open computing language)應用在通用圖形處理器(general purpose graphic processing unit)上運算。圖形處理器上的執行緒透過分析運算相依性及平行度能夠被充分利用,記憶體配置和一些平行處理使用的技巧也被拿來使用。實驗結果證明在一般的個人電腦上運算能夠達到即時影像處理的效果。

    Image enhancement has become more and more important nowadays due to the rapid progress of smart appliances such as smart phone and TV, real time processing and low complexity design have become more significant. HE (histogram equalization) is the most common way to apply contrast enhancement. However, there are not only over enhancement issue, but also lots of side effects generated after implementation on HE. In order to deal with the drawback of HE, we proposed an auto enhance level with side effect removal contrast enhancement, by taking HVS (human visual system) into consideration, we can efficiently reduce the shortcoming in conventional HE. This work combines contrast enhancement with saturation compensation while saturation drops after contrast enhancement.
    Furthermore, we implement our proposed image enhancement algorithm using GPGPU (general purpose graphic processing unit) technique with OpenCL. The GPU threads are well utilized based on our analysis on execution dependency and parallelism. The device memory allocation is managed to minimize the access latency. Several parallel programming techniques are also adopted in our realization. Experimental results shows that the total processing time is dramatically improved using our methodologies, the proposed algorithm implemented in heterogeneous platform occupied real time performance when processing a Full-HD video on a modern personal computer.

    Contents v Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis organization 2 Chapter 2 Background 4 2.1 Previous contrast and saturation enhancement algorithms 4 2.1.1 Histogram equalization 5 2.1.2 Retinex based 7 2.1.3 DCT based 8 2.2 Human visual system 8 2.3 Heterogeneous computing using Open Computing Language 11 2.3.1 General purpose graphics processing unit and related products 11 2.3.2 OpenCL platform and memory model 11 Chapter 3 Proposed image enhancement algorithm 14 3.1 Side effects less auto contrast enhancement 14 3.1.1 Auto Enhancement level decision with histogram classifier 16 3.1.2 Side effects reduction 21 3.2 Constraint saturation improvement 28 3.2.1 Saturation compensation in HSL color space 28 3.2.2 Color discrimination for suppressing noisy hue amplification 29 3.2.3 Local enhancement gain determination 33 3.3 Low complexity hardware architecture design 34 Chapter 4 Experimental results and efficient OpenCL realization 36 4.1 Performance evaluation 36 4.2 Efficient OpenCL realization 43 4.2.1 Resource analysis and kernel function mapping 43 4.2.2 Low latency memory allocation 46 4.2.3 OpenCL and OpenGL interoperation for display interface 50 Chapter 5 Conclusions and future works 54 5.1 Conclusions 54 5.2 Future works 54 Reference 55

    [1] T. Arici, S. Dikbas, and Y. Altunbasak, “A histogram modification framework and its application for image contrast enhancement,” IEEE Trans. Image Process., vol. 18, no. 9, pp. 1921–1935, Sep. 2009.
    [2] T. C. Jen and S. J. Wang, “Bayesian structure-preserving image contrast enhancement and its simplification,” IEEE Trans. Image Process., vol. 22,p. 831–843, June. 2012.
    [3] D. J. Jobson, Z.-U. Rahman, and G. A. Woodell, “Properties and performance of a center/surround retinex,” IEEE Trans. Image Process., vol. 6, no. 3, pp. 451–462, Mar. 1997.
    [4] D. J. Jobson, Z.-U. Rahman, and G. A. Woodell, “A multiscale retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process., vol. 6, no. 7, pp. 965–976, July 1997.
    [5] S. Aghagolzadeh and O. K. Ersoy, “Transform image enhancement,” Opt. Eng., vol. 31, no. 3, Mar. 1992, pp. 614-626.
    [6] J. Tang, E. P. Peli, and S. Acton, “Image enhancement using a contrast measure in the compressed domain,” IEEE Signal Process. Lett., vol. 10, no. 10, pp. 289–292, Oct. 2003.
    [7] J. Mukherjee and S. K. Mitra, “Enhancement of color images by scaling the DCT coefficients,” IEEE Trans. Image Process., vol. 17, no. 10, pp. 1783–1794, Oct. 2008.
    [8] A. P. Karen., J. W. Eric, and S. Agaian, “Human visual system-based image enhancement and logarithmic contrast measure,” IEEE Trans. Systems, Man, and Cybernetics vol. 38, no. 1, pp. 174–188, Feb. 2008.
    [9] Wikipedia. “HSL and HSV.” Internet: http://en.wikipedia.org/wiki/, Oct. 3 2012 [June 14, 2013].
    [10] A.Choudhury and G. Medioni,” Perceptually motivated automatic color contrast enhancement” in Proc. IEEE Int. Conf. Comp. Vis. Workshop.(ICCV Workshops) Sept. 2009, pp.1893-1900.
    [11] Narulasty. “更高效能更省電! 高通S4 正式發佈.” Internet: http://www.hk-android.info/archives/10298, Oct. 10, 2011 [June 14, 2013].
    [12] G. Song and X. L. Qiao, “Adaptive color image enhancement based on human visual properties,” in Proc. IEEE Conf. Ind. Electron. Appl. (ICIEA), June 2008, pp. 1892-1895.
    [13] C. Gao and K. Panetta, “A new color contrast enhancement algorithm for robotic applications,” in Proc. IEEE Int. Conf. Tech. for Practical Robot Appl. (TePRA), Apr. 2012, pp. 42-47.
    [14] D. H. Choi , I. H. Jang , M. H. Kim ,and N. C. Kim, “Color image enhancement based on single-scale retinex with a JND-based nonlinear filter,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May, 2007, pp. 3948-3951.
    [15] B.R. Gaster, L. Howes, D. R. Kaeli, ”Heterogeneous Computing with OpenCL”, Elsevier Science Ltd, 2012.

    無法下載圖示 校內:2018-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE