簡易檢索 / 詳目顯示

研究生: 張宇承
Chang, Yu-Cheng
論文名稱: 具適應性滑動模式干擾量補償架構之循跡精度改善研究
Study on Contouring Accuracy Improvement using Adaptive Sliding Mode based Disturbance Compensation Structure
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 112
中文關鍵詞: 輪廓誤差摩擦力補償頓動力補償干擾量補償架構
外文關鍵詞: contour error, friction force compensation, cogging force compensation, disturbance compensation structure
相關次數: 點閱:120下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於多軸循跡運動控制問題中,如何有效地降低追蹤誤差及輪廓誤差為提升加工精度的重要議題。然而於運動控制系統中,伺服機構往往會因非線性現象影響進而降低系統運動精度。例如當伺服系統操作在低速度運動或反轉運動時,則摩擦力現象之影響將特別明顯。除此之外,系統之模型誤差、外部干擾量或頓動力等影響亦會降低系統運動精度。上述現象將使得運動控制系統各軸的追蹤性能變差,進而降低循跡運動精度。因此,若要提升整體循跡精度,除了必須具備良好的控制架構外,更需進一步探討使用合宜的摩擦力、頓動力及干擾量補償等機制。本論文中,於循跡運動改善之議題上,除了先以回授控制技巧來達到基本循跡精度要求外,並另提出一具適應性滑動模式之干擾量補償架構。所提出方法為基於適應性及滑動模式控制理論,且考慮各軸系統之摩擦力模型及頓動力模型來發展補償架構,並以一配置線性馬達之XY平台進行驗證。實驗結果顯示,本論文所提出之補償方法與其他三種控制架構相較,確實能有效地降低雙軸循跡運動之追蹤誤差及輪廓誤差。

    In multi-axis contour following control problems, how to effectively reduce tracking and contour error is an important issue in machining precision improvement. However, in motion control systems, the servomechanism usually encounters nonlinear phenomena such that the motion accuracy will be degraded. For example, when the servomotor is operated in low speed or a reverse motion, the influence of friction force is inevitable. In addition, the adverse effects of modeling error, external disturbance and cogging force also result in motion accuracy deterioration. The aforementioned problems degrade the tracking performance of the motion in each axis so that the contour error of the overall system is increased. Therefore, to improve contouring accuracy, aside from having an excellent control structure, a further study on friction force compensation and cogging force compensation as well as designing an appropriate disturbance compensation scheme is necessary. Hence, for contour following tasks, in addition to the feedback controller used to meet certain performance requirement, the Adaptive Sliding Mode-based Disturbance Compensation Structure is proposed in this thesis. The proposed compensation scheme is based on sliding mode control and adaptive control, in which a friction force model and a cogging force are also considered. To compare the performance of the proposed structure and three other control schemes, several experiments have been conducted on an X-Y table driven by two linear motors. Experimental results indicate that the proposed control scheme can significantly reduce tracking error and contour error of a biaxial contouring control system.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號表 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機與文獻回顧 2 1-3 論文架構 5 第二章 線性馬達與伺服控制系統架構簡介 7 2-1伺服馬達工作原理與數學模型 7 2-2伺服控制迴路架構 11 2-2.1電流迴路 12 2-2.2速度迴路 13 2-2.3位置迴路 14 2-3線性馬達簡介 15 2-3.1工作原理 15 2-3.2鐵心式與無鐵心式線性同步馬達 17 第三章 循跡運動控制系統 19 3-1 NURBS參數式曲線及插值器 19 3-2 加減速規劃 26 3-3循跡運動控制系統簡介 30 第四章 內迴路干擾量補償架構 32 4-1簡介 32 4-2摩擦力模型與頓動力模型介紹 32 4-2.1 摩擦力數學模型 32 4-2.2 頓動力模型介紹 38 4-3 Lorenz系統模型參數鑑別法 40 4-4干擾量觀測器介紹 44 4-4.1 開迴路干擾量觀測器 44 4-4.2 虛擬模型干擾補償器 47 4-5 滑動模式與適應性控制介紹 50 4-5.1 滑動模式控制介紹 50 4-5.2 適應性控制的介紹 52 4-6 結合適應性滑動模式之干擾量補償架構 56 第五章 實驗設備及結果 62 5-1實驗系統設置 62 5-1.1 硬體設備 62 5-1.2軟體設備 66 5-2實驗一:系統參數估測 67 5-3實驗二:Karnopp摩擦力模型 70 5-4循跡運動控制實驗 75 第六章 結論與建議 107 參考文獻 108

    [1] Masory, “Improving contouring accuracy of NC/CNC systems with additional velocity feedforward loop,” ASME Journal Engineering for Industry, vol. 108, pp. 227–230, 1986.
    [2] M. Tomizuka, “Zero phase error tracking algorithm for digital control,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 109, pp. 65-68, 1987.
    [3] M.-Y. Cheng and C.-C. Lee, “Motion Controller Design for Contour Following Tasks based on Real-time Contour Error Estimation,” IEEE Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1686-1695, 2007.
    [4] Y. Koren, “Cross-coupled biaxial computer control for manufacturing systems,” ASME Journal of Dynamic Systems, vol. 102, pp. 265-272, 1980.
    [5] M. Y. Cheng, K. H. Su, S. F. Wang, “Contour error reduction for free-form contour following tasks of biaxial motion control systems,” Robotics and Computer-Integrated Manufacturing, vol. 25, pp. 323-333, 2009.
    [6] M. T. Yan, M. H. Lee, P. L. Yen, “Theory and application of a combined self-tuning adaptive control and cross-coupling control in a retrofit milling machine,” Mechatronics, vol. 15, pp. 193–211, 2005.
    [7] S. S. Yeh, Z. H. Tsai, P. L. Hsu, “Applications of integrated motion controllers for precise CNC machines,” The International Journal of Advanced Manufacturing Technology, vol. 44, pp. 906-920, 2009.
    [8] M. C. Tsai, I. F. Chiu, M. Y. Cheng, “Design and implementation of command and friction feedforward control for CNC motion controllers,” IEE Proceedings Control Theory and Applications, vol. 151, pp. 13-20, 2004.
    [9] 吳仁哲,伺服控制系統之摩擦力與干擾補償研究,碩士論文,國立成功大學電機工程學系,2009。
    [10] T. Umeno and Y. Hori, “Robust speed control of DC servomotors using modern two degrees-of-freedom controller design,” IEEE Transactions on Industrial Electronics, vol. 38, pp. 363-368, 1991.
    [11] 劉叡明,伺服馬達低轉速控制改善之研究,碩士論文,國立成功大學電機工程學系,2008。
    [12] H. S. Lee, M. Tomizuka, “Robust motion controller design for high-accuracy positioning systems,” IEEE Transactions on Industrial Electronics, vol. 43, pp. 48-55, 1996.
    [13] B. Yao, M. Al-Majed and M. Tomizuka, “High performance robust motion control of machine tools: An adaptive robust control approach and comparative experiments,” IEEE/ASME Transactions on Mechatronics, vol. 2, pp. 63 -76, 1997.
    [14] B. Yao, C. Hu and Q. Wang, “Adaptive robust precision motion control of high-speed linear motors with on-line cogging force compensations,” in Proceedings IEEE/ASME Conference on Advanced Intelligent Mechatronics, pp. 1, 2007.
    [15] L. Lu, Z. Chen, B. Yao and Q. Wang, “Desired compensation adaptive robust control of a linear-motor-driven precision industrial gantry with improved cogging force compensation,” IEEE/ASME Transactions on Mechatronics, vol. 13, pp. 617, 2008.
    [16] B. K. Kim, W. K. Chung and K. Ohba, “Design and performance tuning of sliding-mode controller for high-speed and high-accuracy positioning systems in disturbance observer framework,” IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 3798 -3809, 2009.
    [17] K. Huh, S. Han and B. Lee, “Non-linear Adaptive Control of a Linear-Motor-Driven X-Y Table via Estimating Friction and Ripple Forces,” Proceedings of the Institution of Mechanical Engineers, Part C, vol. 222, pp. 911-918, 2008.
    [18] 廖兼賢,以離散位置資訊作速度與加速度估測之研究,碩士論文,國立成功大學電機工程學系,2004。
    [19] 郭洲成,CNC伺服控制器之NURBS即時插值器設計與實現,碩士論文,國立成功大學機械系,1999。
    [20] M.-Y. Cheng, M.-C. Tsai, and J.-C. Kuo, “Real-time NURBS command generators for CNC servo controllers,” International Journal of Machine Tools & Manufacture, vol. 42, no.7, pp. 801-813, 2002.
    [21] 鄭中緯,鄭銘揚,蔡明祺,“即時參數式插值器之設計與實現”,中國機械工程學會第18屆全國學術研討會論文集, pp. 267-272,2001。
    [22] 鄭中緯,運動控制之即時NURBS曲線及曲面插值器設計與實現, 博士論文,國立成功大學機械系,2003。
    [23] 張裕淵,整合精密運動控制器與NURBS插值器之CNC設計,碩士論文,國立交通大學控制工程研究所,1999。
    [24] D.-M. Tsay, and Jr.-C.-O. Huey, “Application of ration B-Spline to the synthesis of Cam-Follower motion programs,” ASME Journal of Mechanical Design, vol. 115, pp. 621-626, 1993.
    [25] D.-M. Tsay and B.-J. Lin, “Improving the Geometry design of Cylindrical Cams using Nonparametric Rational B-Splines,” Computer-Aided Design, vol. 28, no. 1, pp. 5-15, 1996.
    [26] L. Piegl, “On NURBS: A Survery,” IEEE Computer Graphics &Application, vol. 11, no. 1, pp. 55-71 , 1991.
    [27] 郭洲成,陳志豪,蔡明祺,“S-Curve 速度規劃應用於馬達定位控制”,中國機械工程學會第十五屆全國學術研討會,成功大學,1998。
    [28] D. Karnopp, “Computer simulation of slip-stick friction in mechanical dynamic systems,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 100-103, 1985.
    [29] B. Armstrong, “Friction: Experimental, Modeling and Compensation,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1422-1427, 1988.
    [30] C. Canudas de Wit and V. Seront, “Robust Adaptive Friction Compensation,” in Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 1383-1388, 1990.
    [31] C. Canudas de Wit, P. Moel, A. Aubin, B. Broglato and P. Drevet, “Adaptive Friction Compensation in Robot Manipulators: Low-velocities,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1352-1357, 1989.
    [32] C. Canudas de Wit, H. Olsson, K. J. Åström and P. Lischinsky, “A new Model for Control of Systems with Friction,” IEEE Transactions on Automatic Control, vol.40, no. 3, pp. 419-425, 1995.
    [33] D. Haessig and B. Friedland, “On the Modeling and Simulation of Friction,” ASME Journal of Dynamic System, Measurement, and Control, pp. 113, 1991.
    [34] C. T. Johnson and R. D. Lorenz, “Experimental identification of friction and its compensation in precise, position controlled mechanisms,” IEEE Transactions on Industry Applications, vol. 28, pp. 1392-1398, 1992.
    [35] T. Umeno and Y. Hori, “Robust speed control of DC servomotors using modern two degrees-of-freedom controller design,” IEEE Transactions on Industrial Electronics, vol. 38, pp. 363-368, 1991.
    [36] 楊憲東,非線性控制上課講義,國立成功大學航空太空研究所,2010。
    [37] 工研院,IMP-2硬體使用手冊,2010。
    [38] 工研院,IMP Series 單機模式使用者導引,2010。
    [39] 工研院,IMP-WB-1硬體使用手冊,2010。
    [40] 張智星,MATLAB程式設計與應用,2002。

    下載圖示 校內:2015-08-31公開
    校外:2015-08-31公開
    QR CODE