簡易檢索 / 詳目顯示

研究生: 程勁凱
Cheng, Chin-Kai
論文名稱: 以影像測速法及無網格方法探討水躍之生成
Development of Forced Hydraulic Jumps: Particle Image Velocimetry and Mesh-Free Modeling
指導教授: 戴義欽
Tai, Yih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 63
中文關鍵詞: 水躍發展中之水躍影像測速法無網格方法數值模擬
外文關鍵詞: Hydraulic jumps, Development, Particle Image Velocimetry, Moving Particle Semi-Implicit Method, Mesh-free method, Numerical simulation
相關次數: 點閱:95下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在人造水利結構物的設計中,水躍為水利工程師必須考慮的重要現象之一。因其由超臨界流轉換至亞臨界流的流動特性,於設計中考慮此現象可避免下游結構物因高速流動而導致的侵蝕破壞。此研究利用實驗及數值模擬研究發展中水躍之內部流場及其現象。在本研究之實驗中,透過改變渠道傾角產生不同的入流福祿數,並利用高速攝影機記錄流動的發展過程後,以粒子影像測速法(Particle Image Velocimetry)進行速度場之量測。根據實驗提供之參數,此研究使用弱可壓縮移動粒子半隱式法(Weakly-Compressible Moving Particle Semi-Implicit method)嘗試去重現實驗中所觀測到的流動現象。經由實驗量測所得資料與數值模擬之結果比對後,兩者呈現相似的內部流動現象以及水面變化。此實驗希望透過影像測速法及無網格方法提供發展中之水躍的內部流場細節以及其流動現象。

    The current study aims at the internal flow field and the corresponding phenomena in the developing stage of forced hydraulic jumps. It consists of experimental and numerical investigations. A series of experiments with various Froude number were performed by adjusting the inclination angle of the channel. A nonintrusive measuring technique, Particle Image Velocimetry (PIV), was applied in the experiments. Numerically, Weakly-Compressible Moving Particle Semi-implicit (WC-MPS) method coupled with the Sub-particle-scale turbulence model was employed to reproduce the flow phenomena. The simulation results for both flow surface profiles and velocity distributions at different sections were compared to the experimental data from the reference and the current study. Flow phenomena showed good agreement with the numerical simulation results. Finally, the results from both experiments and simulation provided a detailed examination of the flow field during the developing stages of forced hydraulic jumps.

    摘要 i Abstract ii Acknowledgements iii Contents iv List of Tables vi List of Figures vii Notation ix Chapter 1 Introduction 1 1-1 Background 1 1-2 Literature review 2 1-3 Objective 4 Chapter 2 Experimental investigation 8 2-1 Facilities and instrumentations 8 2-2 Measurements 10 2-3 Velocity field 17 Chapter 3 Numerical method 20 3-1 Governing equation 20 3-2 Kernel function 20 3-3 Discretization and algorithm 21 3-4 Weak compressibility 24 3-5 Turbulence modelling 25 3-6 Boundary Conditions 26 Chapter 4 Parameters and simulation setup 28 4-1 Numerical parameters 29 4-2 Case 1 30 4-3 Case 2 to 4 31 Chapter 5 Results and discussions 32 5-1 Developed hydraulic jump 32 5-2 Development of forced hydraulic jumps 34 Chapter 6 Conclusions 55 References 56 Appendix 60

    1. Ataie-Ashtiani, B., & Farhadi, L. (2006), “A stable moving-particle semi-implicit method for free surface flows,” Fluid Dynamics Research, 38(4), 241-256.
    2. Batchelor, G. K. (1967), An introduction to fluid dynamics, UK: Cambridge University Press.
    3. Chanson, H. (2011), “Turbulent shear stresses in hydraulic jumps, bores and decelerating surges,” Earth Surface Processes and Landforms, 36(2), 180-189.
    4. Chow, V. T. (1959), Open channel hydraulics., New York: McGraw-Hill Book Company, Inc.
    5. Chippada, S., Ramaswamy, B., & Wheeler, M. F. (1994), “Numerical simulation of hydraulic jump,” International journal for numerical methods in engineering, 37(8), 1381-1397.
    6. Dalrymple, R. A., & Rogers, B. D. (2006), “Numerical modeling of water waves with the SPH method,” Coastal engineering, 53(2), 141-147.
    7. De Padova, D., Mossa, M., Sibilla, S., & Torti, E. (2013), “3D SPH modelling of hydraulic jump in a very large channel,” Journal of Hydraulic Research, 51(2), 158-173.
    8. Federico, I., Marrone, S., Colagrossi, A., Aristodemo, F., & Antuono, M. (2012), “Simulating 2D open-channel flows through an SPH model,” European Journal of Mechanics-B/Fluids, 34, 35-46.
    9. Gharangik, A. M., & Chaudhry, M. H. (1991), “Numerical simulation of hydraulic jump,” Journal of hydraulic engineering, 117(9), 1195-1211.
    10. Gomez DL. (2007), “The hydraulic jump: a test case for the SPH model,” Proceedings of the 32nd IAHR Congress, Venice, Italy.
    11. Gotoh, H., Shibahara, T., & Sakai, T. (2001), “Sub-particle-scale turbulence model for the MPS method Lagrangian flow model for hydraulic engineering,” Advanced Methods for Computational Fluid Dynamics, 9, 339-347.
    12. Gotoh, H., Ikari, H., Memita, T., & Sakai, T. (2005), “Lagrangian particle method for simulation of wave overtopping on a vertical seawall,” Coastal Engineering Journal, 47(2-3), 157-181.
    13. Huang, H. T., Fiedler, H. E., & Wang, J. J. (1993), “Limitation and improvement of PIV,” Experiments in Fluids, 15(4-5), 263-273.
    14. Hornung, H. G., Willert, C., & Turner, S. (1995), “The flow field downstream of a hydraulic jump,” Journal of Fluid Mechanics, 287, 299-316.
    15. Koch, C., & Chanson, H. (2005), “An experimental study of tidal bores and positive surges: hydrodynamics and turbulence of the bore front,” (No. CH56/05).
    16. Koshizuka, S. (1995), “A particle method for incompressible viscous flow with fluid fragmentation,” International Journal of Computational Fluid Dynamics, 4, 29-46.
    17. Koshizuka, S., & Oka, Y. (1996), “Moving-particle semi-implicit method for fragmentation of incompressible fluid,” Nuclear science and engineering, 123(3), 421-434.
    18. Koshizuka, S., Nobe, A., & Oka, Y. (1998), “Numerical analysis of breaking waves using the moving particle semi-implicit method,” International Journal for Numerical Methods in Fluids, 26(7), 751-769.
    19. Khayyer, A., & Gotoh, H. (2008), “Development of CMPS method for accurate water-surface tracking in breaking waves,” Coastal Engineering Journal, 50(2), 179-207.
    20. Fu, L. & Jin, Y. C. (2013), “A mesh-free method boundary condition technique in open channel flow simulation,” Journal of Hydraulic Research, 51(2), 174-185, DOI: 10.1080/00221686.2012.745455
    21. Liu, QC. & Uwe, D. (1994), “Turbulence characteristics in free and forced hydraulic jumps,” Journal of hydraulic research, 32(6), 877-898.
    22. Lennon, J. M., & Hill, D. (2006), “Particle image velocity measurements of undular and hydraulic jumps,” Journal of Hydraulic Engineering, 132(12), 1283-1294.
    23. Lin, C., Hsieh, S. C., Lin, I. J., Chang, K. A., & Raikar, R. V. (2012), “Flow property and self-similarity in steady hydraulic jumps,” Experiments in fluids, 53(5), 1591-1616.
    24. Lu, C. H. (2016), “Investigation on the complex fluids by Digital Particle Image Velocimetry,” 國立成功大學水利及海洋工程學系碩士論文.
    25. Monaghan, J. J. (1994), “Simulating free surface flows with SPH,” Journal of computational physics, 110(2), 399-406.
    26. Mott, R. L., Noor, F. M., & Aziz, A. A. (2006). Applied fluid mechanics (2nd ed.), Columbus: Pearson Prentice Hall.
    27. Misra, S. K., Kirby, J. T., Brocchini, M., Veron, F., Thomas, M., & Kambhamettu, C. (2008), “The mean and turbulent flow structure of a weak hydraulic jump,” Physics of Fluids (1994-present), 20(3), 035106.
    28. Murzyn, F., & Chanson, H. (2009), “Free-surface fluctuations in hydraulic jumps: Experimental observations,” Experimental Thermal and Fluid Science, 33(7), 1055-1064.
    29. Nazari, F., Jin, Y. C., & Shakibaeinia, A. (2012), “Numerical analysis of jet and submerged hydraulic jump using moving particle semi-implicit method,” Canadian Journal of Civil Engineering, 39(5), 495-505.
    30. Rajaratnam, N. (1967), “Hydraulic jumps,” Advances in hydroscience, 4, 197-280.
    31. Svendsen, I. A., Veeramony, J., Bakunin, J., & Kirby, J. T. (2000), “The flow in weak turbulent hydraulic jumps,” Journal of fluid Mechanics, 418, 25-57.
    32. Shakibaeinia, A., & Jin, Y. C. (2010), “A weakly compressible MPS method for modeling of open‐boundary free‐surface flow,” International journal for numerical methods in fluids, 63(10), 1208-1232.
    33. Shakibaeinia, A., & Jin, Y. C. (2011), “MPS-based mesh-free particle method for modeling open-channel flows,” Journal of Hydraulic Engineering, 137(11), 1375-1384.
    34. Thielicke, W. (2014), The flapping flight of birds, Doctoral dissertation, University of Groningen.
    35. Thielicke, W., & Stamhuis, E. (2014), “PIVlab–Towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB,” Journal of Open Research Software, 2(1).
    36. Willert, C. E., & Gharib, M. (1991), “Digital particle image velocimetry,” Experiments in fluids, 10(4), 181-193.
    37. Xin, Y. (1993), Strómungseigenschaften unterhalb des freien und des erzwungenen Wechselsprungs. Mitteilung Nr. 119, Leichtweiss-Institut für Wasserbau, Technical University of Braunschweig.
    38. Zhou, J. G., & Stansby, P. K. (1999), “2D shallow water flow model for the hydraulic jump,” International Journal for Numerical Methods in Fluids, 29(4), 375-387.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE