簡易檢索 / 詳目顯示

研究生: 劉子瑜
Liu, Tzu-Yu
論文名稱: 基於弦波電流驅動於永磁同步馬達電流迴路控制之研究
Study on the Current Loop Control of Permanent Magnet Synchronous Motors Based on Sinusoidal Commutation
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 158
中文關鍵詞: 弦波換向三相電流控制磁場導向控制永磁同步馬達
外文關鍵詞: sinusoidal commutation, three-phase current control, field oriented contrl(FOC), permanent magnet synchronous motor
相關次數: 點閱:114下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電流迴路一般又稱為轉矩迴路,在交流伺服驅動器中扮演重要的角色,設計良好的電流迴路可以使馬達獲得平穩及響應快速的轉矩輸出、有效保護馬達及驅動器硬體電路,此外更可以簡化速度及位置外迴路伺服參數的設計與調校。弦波換向的機制可分為兩大類,分別為三相a-b-c軸及二相d-q軸磁場導向控制(向量控制),雖然這兩種方法在工業界廣被採用,但針對這兩種換向機制進行綜合討論的相關文獻卻相當有限。
    本論文主要針對永磁同步馬達的弦波電流驅動控制進行研究,為了說明三相電流控制及磁場導向控制的差異利用Matlab/simulink軟體建立模擬環境,在兩種不同的換向理論基礎下,針對電流迴路的動態響應、伺服參數的設計及控制器的強健性進行討論。除了完整的理論分析,本論文並採用Microchip公司生產之dsPIC30F4011為控制核心,設計完整的硬體電路及軟體程式以實現性能較為優異的磁場導向控制。以市售1馬力的交流伺服馬達進行驅動控制器各項性能的驗證,由實驗結果證實,本論文所建立之驅動控制器可在轉矩迴路及速度迴路下進行各種加減速及加載操作。

    The torque loop, known as the current control loop, plays an important role in the AC servo drive. Well-designed current control loop can provide a smooth and fast torque response to AC motor and efficiently protect the motor and drive’s hardware circuit. In addition, it also simplifies the control design and parameter tuning for the velocity loop and position loop. Sinusoidal commutation can be divided into two categories: three-phase current control and field oriented control (FOC). However, there is few existing literature focusing on systematically comparing the performance of the above two sinusoidal commutation techniques. The goal of this thesis is to study the current control based on the sinusoidal commutation for the permanent magnet synchronous motor. In order to compare the differences between three-phase current control and field oriented control, the Matlab/simulink software is used to construct a simulation system to discuss the dynamic response of current control, design of servo parameter, and robustness of controller. In addition to theoretic analysis, the dsPIC30F4011 by Microchip is employed in this thesis as a core of the control system to realize field oriented control by well-designed hardware circuits and software programs. A commercial 1 hp servo motor is used as the test platform to evaluate the performance of the servo drive developed in this thesis. According the experimental results, the servo drive developed in this thesis can control the servo motor with external load to perform acceleration/deceleration under the torque mode and the velocity mode.

    中文摘要...........................................I 英文摘要...........................................II 誌謝...............................................III 目錄...............................................V 表目錄.............................................VIII 圖目錄.............................................IX 第一章 緒論........................................1 1.1 研究背景與發展概況.............................1 1.2 研究目的與方法.................................................2 1.2.1 研究目的.....................................2 1.2.2 文獻回顧.....................................2 1.2.3 研究方法.....................................4 1.3 論文架構.......................................5 第二章 永磁同步馬達的介紹..........................6 2.1 電動機簡介.................................................6 2.2 永磁同步馬達的驅動方法.........................12 2.2.1 方波電流驅動.................................12 2.2.2 弦波電流驅動.................................14 2.3 永磁同步馬達數學模型...........................16 2.3.1 於定子三相座標下之數學模型...................16 2.3.2 座標轉換.....................................21 2.3.3 同步旋轉座標下之兩軸數學模型.................25 2.4 空間向量脈波寬度調變法 SVPWM...................28 第三章 永磁同步馬達弦波電流控制....................38 3.1 電流控制之目的及重要性.........................38 3.2 電腦模擬建立...................................41 3.2.1 永磁同步馬達動態模型.........................41 3.2.2 電壓源變頻器.................................43 3.2.3 開迴路控制模擬...............................45 3.3 三相弦波電流控制及控制器之設計.................49 3.3.1 電流迴路PI控制器.............................52 3.3.2 電流迴路P控制器..............................62 3.4 磁場導向電流控制...............................70 3.4.1 電流解耦合控制及PI控制器設計.................72 3.5 永磁同步馬達速度控制系統.......................78 3.5.1 速度與電流串聯式伺服控制迴路.................79 3.5.2 無內電流迴路之速度控制迴路...................85 3.6 電流控制討論...................................87 3.6.1 電流控制的強健性探討.........................88 3.6.2 電流閉迴路頻寬設計不當的影響.................91 第四章 系統架構及實驗結果..........................94 4.1 實驗系統架構...................................94 4.1.1 數位訊號控制器...............................94 4.1.2 功率驅動級電路設計...........................97 4.1.3 電流感測器...................................100 4.1.4 動力計量測平台...............................101 4.2 軟體程式.......................................102 4.2.1 dsPIC30F4011周邊功能設定.....................102 4.2.2 Q格式........................................107 4.2.3 數位低通濾波器...............................109 4.2.4軟體程式設計流程..............................112 4.3 電流回授訊號的雜訊抑制.........................119 4.3.1 數位低通濾波器...............................122 4.3.2 配合開關訊號進行AD取樣.......................123 4.3.3 提高取樣頻率,對回授電流進行訊號處理.........124 4.4 實驗一:永磁同步馬達伺服驅動器特性量測.........126 4.5 實驗二:電流閉迴路控制下加/減速性能及電流響應..130 4.6 實驗三:速度與電流串聯式伺服控制...............137 4.6.1 200rpm到400rpm步階響應.......................143 4.6.2 500rpm到1000rpm步階響應......................145 4.6.3 1000rpm到2000rpm步階響應.....................147 第五章 結論與未來研究建議..........................149 5.1 結論...........................................149 5.2 未來研究建議...................................149 參考文獻...........................................151 附錄...............................................157

    [1] “IRMCF321-Dual channel sensorless motor control IC for appliances,” Application note, International Rectifier Co., 2006. www.irf.com
    [2] D. M. Brod and D. W. Novotny, “Current control of VSI-PWM inverters,” IEEE Transactions on Industry Applications, vol. IA-21, no. 4, pp. 562-570, May/June 1985.
    [3] A. Tripathi and P. C. Sen, “Comparative analysis of fixed and sinusoidal band hysteresis current controllers for voltage source inverters,” IEEE Transactions on Industrial Electronics, vol. 39, no. 1, pp. 63-73, February 1992.
    [4] S. K. Sul, B. H. Kwon, J. K. Kang, K. Y. Lim and M. H. Park, “Design of an optimal discrete current regulator,” in Conference Record IEEE-IAS Annual Meeting, vol. 1, pp. 350-354, October 1989.
    [5] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage source PWM converters: a survey,” IEEE Transactions on Industrial Electronics, vol. 45, no. 5, pp. 691-703, October 1998.
    [6] Y. Baudon, D. Jouve and J. P. Ferrieux, “Current control of permanent magnet synchronous machines. Experimental and simulation study,” IEEE Transactions on Power Electronics, vol. 7, no. 3, pp. 560-567, July 1992.
    [7] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motor,” in IEE Proceedings, Electric Power Application, vol. 147, no. 6, pp. 503-512, November 2000.
    [8] R. Gabriel, W. Leonhard and C. J. Nordby, “Field-oriented control of a standard ac motor using microprocessors,” IEEE Transactions on Industry Applications, vol. 16, no. 2, pp. 186-192, March/April 1980.
    [9] D. Telford, M. W. Dunnigan and B. W. Williams, “Adaptive high bandwidth current control for induction machines,” IEEE Transactions on Power Electronics, vol. 18, no. 2, pp.527-538, March 2003.
    [10] Y. Y. Tzou and S. Y. Lin, “Fuzzy-tuning current-vector control of a three-phase PWM inverter for high-performance AC drives,” IEEE Transactions on Industrial Electronics, vol. 45, no. 5, pp. 782-791, October 1998.
    [11] S. H. Song, J. W. Choi and S. K. Sui, “Current measurements in digitally controlled AC drives,” IEEE Industry Applications Magazine, vol. 6, no. 4, pp. 51-62, July/August 2000.
    [12] H. S. Jung, S. H. Hwang, J. M. Kim, C. U. Kim and C. Choi, “Diminution of current-measurement error for vector-controlled AC motor drives,” IEEE Transactions on Industry Applications, vol. 42, no. 5, pp. 1249-1256, September/October 2006.
    [13] 黃宗勝,「永磁伺服馬達之自動切換式Fuzzy_Lead-Lag控制器設計」,碩士論文,國立交通大學電機與控制工程學系,2007。
    [14] 劉昌煥,交流電機控制─向量控制與直接轉矩控制原理,第三版,東華書局,2005。
    [15] T. M. Jahns, and V. Blasko, “Recent advances in power electronics technology for industrial and traction machine drives,” in Proceedings of the IEEE, vol. 89, no. 6, pp. 963-975, June 2001.
    [16] G. R. Slemon, “Electrical machines for variable frequency drives,” in Proceedings of the IEEE, vol. 82, no. 8, pp. 1123-1139, August 1994.
    [17] R. D. Lorenz, T. A. Lipo, and D. W. Novotny, “Motion control with induction motors,” in Proceedings of the IEEE, vol. 82, no. 8, pp. 1215-1240, August 1994.
    [18] 林百福,陳秀美譯,汽車馬達技術,全華科技圖書股份有限公司,2005。
    [19] 巫昌圜,「內藏式永磁同步馬達弱磁控制於電動載具速度提升之探討與實現」,碩士論文,國立成功大學電機工程學系,2004。
    [20] S. Morimoto, M. Sanada, and Y. Takeda, “High performance current sensorless drive for PMSM and SynRM with only low resolution position sensor,” IEEE Transactions on Industry Applications, vol. 39, no. 3, pp. 792-801, May/June 2003.
    [21] C. H. Chen and M. Y. Cheng, “A new cost effective sensorless commutation method for brushless DC motors without phase shift circuit and neutral voltage,” IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 644-653, March 2007.
    [22] T. D. Batzel and K. Y. Lee, “Commutation torque ripple minimization for permanent magnet synchronous machines with hall effect position feedback,” IEEE Transactions on Energy Conversion, vol. 13, no. 3, pp. 257-262, September 1998.
    [23] D. Y. Ohm, “Dynamic model of PM synchronous motors,” Drivetech, Inc., Blacksburg, Virginia, 2000. www.drivetechinc.com
    [24] 鄒應嶼,電動機控制:原理與實務,財團法人自強工業科學基金會上課講義,2008。
    [25] P. Pillay and R. Krishnan, “Modeling, simulation, and analysis of permanent-magnet motor drives, Part I: the permanent-magnet synchronous motor drive,” IEEE Transactions on Industry Applications, vol. 25, no. 2, pp. 265-273, March/April 1989.
    [26] 申秉弘,「永磁無刷馬達之新型無轉軸偵測器定位控制與其應用」,碩士論文,國立成功大學機械工程學系,2002。
    [27] 蔡明發, “交流馬達控制模擬及其空間向量波寬調變SIMULINK模擬方塊之建立,” 明新學報, vol. 31, pp. 117-127, 2005.
    [28] S. J. Henriksen, R. E. Betz, and B. J. Cook, “Digital hardware implementation of a current controller for IM variable-speed drives,” IEEE Transactions on Industry Applications, vol. 35, no. 5, pp. 1021-1029, September/October 1999.
    [29] 許溢适,劉昌煥,AC伺服系統的理論與設計實務,第四版,文笙書局,1999。
    [30] Chee-Mun Ong, Dynamic Simulation of Electric Machinery: Using Matlab/Simulink, Prentice Hall PTR, 1998.
    [31] George Ellis, Control system design guide : using your computer to develop and diagnose feedback controllers, 2nd edition, Academic Press, USA, 1991.
    [32] 張碩,自動控制系統,第五版,鼎茂圖書出版股份有限公司,2001。
    [33] “What is ‘field oriented control’ and what good is it?,” Technical article, Copley Controls Corp. www.copleycontrols.com
    [34] H. Kim and T. M. Jahns, “Current control for AC motor drives using a single DC-link current sensor and measurement voltage vectors,” IEEE Transactions on Industry Applications, vol. 42, no. 6, pp. 1539-1547, November/December 2006.
    [35] “Three phase current measurements using a single line resistor on the TMS320F240,” literature number : BPRA077, Texas Instruments Europe, May 1998. www.ti.com
    [36] 詹前茂,電機驅動控制-理論與實驗,新文京開發出版股份有限公司,2003。
    [37] 山崎浩著,白中和譯,Power(大功率) MOSFET/IGBT應用設計技術,建興文化事業有限公司,2003。
    [38] Cyntec, SDIP–IPM Application note, Cyntec Co., Ltd., 2004.
    [39] 戴志展, “半/全橋電路之專用型驅動IC應用設計探討,” 馬達電子報, 第184期, pp. 1-7, June 2006.
    [40] ACS712 datasheet, Allegro MicroSystems Inc., 2007.
    [41] Microchip, dsPIC30F Family Reference Manual, Microchip Technology Inc., 2003.
    [42] 鐘文政,數位訊號處理器–DSP TMS320C252原理與實習應用,長高電腦圖書,1995。
    [43] 施慶隆,李文猶,機電整合控制–多軸運動設計與應用,全華科技圖書股份有限公司,2002。
    [44] 陳敬奇,「電動車直流無刷軸向磁通車輪馬達之數位控制器的研製與弱磁控制的探討」,碩士論文,國立台灣大學機械工程學系,2003。
    [45] Eddy Ho, “IRMCF3xx Series Controller Dynamics and Tuning,” Application note AN-1090, International Rectifier Co. www.irf.com

    下載圖示 校內:2019-08-17公開
    校外:2019-08-17公開
    QR CODE