簡易檢索 / 詳目顯示

研究生: 蔡靖彥
Tsai, Ching-Yen
論文名稱: 應用輔助分類生成式對抗網路及深度神經網路於電網形成型變流器的自適應虛擬慣量及阻尼調控之研究
A Study on the Application of Auxiliary Classification Generative Adversarial Networks and Deep Neural Networks for Adaptive Virtual Inertia and Damping Control of Grid-Forming Inverters in Power Systems
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 98
中文關鍵詞: 電網形成型變流器虛擬同步發電機虛擬慣量阻尼
外文關鍵詞: Grid-Forming Inverter, Virtual Synchronous Generator, Virtual Inertia, Damping
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對電網形成型變流器於併網運轉與離網運轉模式下之動態響應特性進行模擬分析,提出一套結合輔助分類生成式對抗網路與深度神經網路之人工智能模型,以作為自適應虛擬慣量及自適應阻尼參數之預測控制,有助於提升系統於不同運轉情境的頻率穩定性。本文在核心控制策略上,採用虛擬同步發電機控制技術,使變流器具備慣量與阻尼特性,並透過人工智能模型以即時調整控制參數。而為驗證本文所提方法之可行性,本文模擬不同系統擾動情境,包括電網故障與負載變動,藉以觀察本文所提方法對於虛擬慣量及阻尼參數之調控能力與響應效果。茲由模擬結果顯示,當變流器運轉於併網模式時,本文方法能夠提供電壓支撐及有效抑制頻率振盪;而於離網模式下,則可穩定支撐微電網運轉,以維繫系統面對負載變化時之頻率穩定。本文研究成果可應用於電網形成型變流器之運轉控制,同時可作為提升電網運轉韌性時之施行參考。

    This study conducts simulation analysis on the dynamic response characteristics of grid-forming inverter under both grid-connected and islanded operating modes. An artificial intelligence model that integrates an auxiliary classifier generative adversarial network with a deep neural network, serving as a predictive control method for adaptive virtual inertia and adaptive damping parameters, thereby enhancing frequency stability under various operating scenarios. The core control strategy of the proposed method adopts the virtual synchronous generator technique for the inverter to emulate inertia and damping characteristics. The proposed AI model allows real-time adjustment of control parameters in response to system operating conditions. To validate the feasibility of the proposed approach, this study simulates different disturbance scenarios including grid faults and load variations, where the model’s prediction accuracy and control performance is assessed with respect to virtual inertia and damping. Simulation results show that under grid-connected mode, the proposed method can provide voltage support and suppress frequency oscillations effectively. Then in the islanded mode, the method can stably support microgrid operation and maintain frequency stability under load changes. The findings of this study can be applied to the operational control of grid-forming inverter and serve as a reference for enhancing the resilience of power system operations.

    中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 圖目錄 IX 1第一章 緒論 1 1-1 研究動機與文獻探討 1 1-2 研究方法與步驟敘述 2 1-3 論文各章重點簡述 5 2 第二章 電網形成型變流器控制技術與發展 6 2-1 前言 6 2-2 電網追隨型與電網形成型的控制策略差異 7 2-2-1 電網追隨型變流器控制架構 7 2-2-2 電網形成型變流器控制架構 8 2-3 電網形成型變流器控制原理與控制迴路 10 2-4 傳統自適應虛擬慣量及阻尼控制原理與控制迴路 24 2-5 本章結論 26 3 第三章 涵括生成式與預測式模型之電網形成型變流器 28 3-1 前言 28 3-2 生成式對抗網路介紹 29 3-3 輔助分類生成式對抗網路介紹 32 3-4 深度神經網路介紹 35 3-5 應用生成式與預測式之人工智慧模型於電網形成型變流器之探討 41 3-6 本章結論 45 4 第四章 研究模擬結果探討 46 4-1 前言 46 4-2 模擬系統參數 46 4-3 電網形成型變流器之併網運轉系統 47 4-3-1 蒐集電網故障情境之運轉數據 47 4-3-2 擴增電網故障情境之運轉數據 48 4-3-3 預測電網故障情境之自適應虛擬慣量及阻尼 50 4-3-4 電網形成型變流器於併網模式之模擬情境與測試結果 50 4-4 電網形成型變流器之離網運轉系統 59 4-4-1 蒐集負載變動情境之運轉數據 60 4-4-2 擴增負載變動情境之運轉數據 62 4-4-3 預測負載變動情境之自適應虛擬慣量及阻尼 63 4-4-4 電網形成型變流器於離網模式之模擬情境與測試結果 64 4-5 本章結論 73 5 第五章 結論及未來研究方向 74 5-1 結論 74 5-2 未來研究方向 75 參考文獻 76

    [1] C. Li, Y. Yang, Y. Cao, A. Aleshina, J. Xu, and F. Blaabjerg, “Grid Inertia and Damping Support Enabled by Proposed Virtual Inductance Control for Grid-Forming Virtual Synchronous Generator,” IEEE Transactions on Power Electronics, vol. 38, no. 1, pp. 294-303, Jan. 2023.
    [2] R. Aljarrah, B. B. Fawaz, Q. Salem, M. Karimi, H. Marzooghi, and R. Azizipanah-Abarghooee, “Issues and Challenges of Grid-Following Converters Interfacing Renewable Energy Sources in Low Inertia Systems: A Review,” IEEE Access, vol. 12, pp. 5534-5561, Jan. 2024.
    [3] J. Wang and K. Ma, “Inertia and Grid Impedance Emulation of Power Grid for Stability Test of Grid-Forming Converter,” IEEE Transactions on Power Electronics, vol. 38, no. 2, pp. 2469-2480, Feb. 2023.
    [4] J. -Y. Park and J. -W. Chang, “Novel Autonomous Control of Grid-Forming DGs to Realize 100% Renewable Energy Grids,” IEEE Transactions on Smart Grid, vol. 15, no. 3, pp. 2866-2880, May 2024.
    [5] D. B. Rathnayake and B. Bahrani, “Multivariable Control Design for Grid-Forming Inverters with Decoupled Active and Reactive Power Loops,” IEEE Transactions on Power Electronics, vol. 38, no. 2, pp. 1635-1649, Feb. 2023.
    [6] M. M. Islam, K. M. Muttaqi, D. Sutanto, M. M. Rahman, and O. Alonso, “Design of a Controller for Grid Forming Inverter-Based Power Generation Systems,” IEEE Access, vol. 11, pp. 55755-55770, May 2023.
    [7] M. A. Elshenawy, A. Radwan, and Y. Mohamed, “Coordinated Grid-Forming Controller for Solid-State Transformer-Enabled PV Farms,” IEEE Transactions on Energy Conversion, vol. 38, no. 4, pp. 2596-2611, Dec. 2023.
    [8] D. B. Rathnayake, S. P. Me, R. Razzaghi, and B. Bahrani, “H∞-Based Control Design for Grid-Forming Inverters with Enhanced Damping and Virtual Inertia,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 2, pp. 2311-2325, Apr. 2023.
    [9] H. Xiao, H. He, L. Zhang, and T. Liu, “Adaptive Grid-Synchronization Based Grid-Forming Control for Voltage Source Converters,” IEEE Transactions on Power Systems, vol. 39, no. 2, pp. 4763-4766, Mar. 2024.
    [10] G. W. Chang and K. T. Nguyen, “A New Adaptive Inertia-Based Virtual Synchronous Generator with Even Inverter Output Power Sharing in Islanded Microgrid,” IEEE Transactions on Industrial Electronics, vol. 71, no. 9, pp. 10693-10703, Sep. 2024.
    [11] L. Li, K. Zhou, and P. Tian, “A Decentralized Control with Adaptive Virtual Inertia and Damping Combination for Islanded Cascaded-Type VSG Systems,” IEEE Access, vol. 11, pp. 139272-139283, Dec. 2023.
    [12] E. A. S. Ducoin, Y. Gu, B. Chaudhuri, and T. C. Green, “Analytical Design of Contributions of Grid-Forming and Grid-Following Inverters to Frequency Stability,” IEEE Transactions on Power Systems, vol. 39, no. 5, pp. 6345-6358, Sep. 2024.
    [13] F. Zhao, T. Zhu, Z. Li, and X. Wang, “Low-Frequency Resonances in Grid-Forming Inverters: Causes and Damping Control,” IEEE Transactions on Power Electronics, vol. 39, no. 11, pp. 14430-14447, Nov. 2024.
    [14] A. Oshnoei, H. Sorouri, R. Teodorescu, and F. Blaabjerg, “An Intelligent Synchronous Power Control for Grid-Forming Inverters Based on Brain Emotional Learning,” IEEE Transactions on Power Electronics, vol. 38, no. 10, pp. 12401-12405, Oct. 2023.
    [15] H. Issa, V. Debusschere, L. Garbuio, P. Lalanda, and N. Hadjsaid, “Artificial Intelligence-Based Controller for Grid-Forming Inverter-Based Generators,” IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Novi Sad, Serbia, pp. 1-6, Oct. 2022.
    [16] T. Kerdphol, M. Watanabe, K. Hongesombut, and Y. Mitani, “Self-Adaptive Virtual Inertia Control-Based Fuzzy Logic to Improve Frequency Stability of Microgrid with High Renewable Penetration,” IEEE Access, vol. 7, pp. 76071-76083, Jun. 2019.
    [17] Y. Zheng and D. Wang, “An Auxiliary Classifier Generative Adversarial Network Based Fault Diagnosis for Analog Circuit,” IEEE Access, vol. 11, pp. 86824-86833, Aug. 2023.
    [18] M. Zhang and Q. Xu, “Deep Neural Network-Based Stability Region Estimation for Grid-Converter Interaction Systems,” IEEE Transactions on Industrial Electronics, vol. 71, no. 10, pp. 12233-12243, Oct. 2024.
    [19] X. Fu, J. Sun, M. Huang, Z. Tian, H. Yan, H. H.-C. Iu, P. Hu, and X. Zha, “Large-Signal Stability of Grid-Forming and Grid-Following Controls in Voltage Source Converter: A Comparative Study,” IEEE Transactions on Power Electronics, vol. 36, no. 7, pp. 7832-7840, Jul. 2021.
    [20] A. González-Cajigas, J. Roldán-Pérez, and E. J. Bueno, “Design and Analysis of Parallel-Connected Grid-Forming Virtual Synchronous Machines for Island and Grid-Connected Applications,” IEEE Transactions on Power Electronics, vol. 37, no. 5, pp. 5107-5121, May 2022.
    [21] X. Gao, D. Zhou, A. Anvari-Moghaddam, and F. Blaabjerg, “Stability Analysis of Grid-Following and Grid-Forming Inverters Based on State-Space Modelling,” IEEE Transactions on Industry Applications, vol. 60, no. 3, pp. 4910-4920, May-June 2024.
    [22] A. Dehghan Banadaki, F. D. Mohammadi, and A. Feliachi, “State Space Modeling of Inverter Based Microgrids Considering Distributed secondary voltage control,” North American Power Symposium (NAPS), Morgantown, West Virginia, USA, pp. 1-6, Sep. 2017.
    [23] S. Gupta, V. Kekatos, and M. Jin, “Controlling Smart Inverters Using Proxies: A Chance-Constrained DNN-Based Approach,” IEEE Transactions on Smart Grid, vol. 13, no. 2, pp. 1310-1321, Mar. 2022.
    [24] Q. Ma, L. Chen, L. Li, Y. Min, Y. Gong, and K. Liang, “Effect of Grid-Following VSC on Terminal Frequency,” IEEE Transactions on Power Systems, vol. 38, no. 2, pp. 1775-1778, Mar. 2023.
    [25] Y. Li, Y. Gu, and T. C. Green, “Revisiting Grid-Forming and Grid-Following inverter: A Duality Theory,” IEEE Transactions on Power Systems, vol. 37, no. 6, pp. 4541-4554, Nov. 2022.
    [26] Q. Shi, W. Dong, G. Wang, J. Ma, C. Wang, X. Guo, and V. Terzija, “Grid Strength Assessment Method for Evaluating Small-Signal Synchronization Stability of Grid-Following and Grid-Forming Converters Integrated Systems,” Journal of Modern Power Systems and Clean Energy, vol. 13, no. 1, pp. 55-65, Jan. 2025.
    [27] N. Mohammed, H. Udawatte, W. Zhou, D. J. Hill, and B. Bahrani, “Grid-Forming Inverters: A Comparative Study of Different Control Strategies in Frequency and Time Domains,” IEEE Open Journal of the Industrial Electronics Society, vol. 5, pp. 185-214, Mar. 2024.
    [28] Q. Lin, H. Uno, K. Ogawa, Y. Kanekiyo, T. Shijo, J. Arai, T. Matsuda, D. Yamashita, and K. Otani, “Field Demonstration of Parallel Operation of Virtual Synchronous Controlled Grid-Forming Inverters and a Diesel Synchronous Generator in a Microgrid,” IEEE Access, vol. 10, pp. 39095-39107, Apr. 2022.
    [29] M. Tozak, S. Taskin, I. Sengor, and B. P. Hayes, “Modeling and Control of Grid Forming Converters: A Systematic Review,” IEEE Access, vol. 12, pp. 107818-107843, Aug. 2024.
    [30] J. Wang, Z. Liu, Y. Shi, and J. Liu, “A Communication-Less Secondary Control Method for Parallel Grid-Forming Inverters in Islanded Microgrids Based on Mode Switching,” IEEE Transactions on Power Electronics, vol. 39, no. 3, pp. 3683-3701, Mar. 2024.
    [31] L. Huang, C. Wu, D. Zhou, and F. Blaabjerg, “Mixed Grid-Forming and Grid-Following Inverters with Secondary Control Providing Fast Voltage and Frequency Support,” 2023 25th European Conference on Power Electronics and Applications, Aalborg, Denmark, pp. 1-10, Sep. 2023.
    [32] M. K. Raza Khan and P. Kundu, “Modified VSG Scheme for Secondary Frequency Regulation in Islanded Microgrid,” IEEE International Conference on Power Systems (ICPS), Kharagpur, India, pp. 1-6, Dec. 2021.
    [33] 台電系統規劃處,陳志宏、莊政宏、洪永輝、李清雲、張忠良,「同步發電機特性參數對暫態穩定度之影響」,中華民國電驛協會會刊,2010年2月第29期。
    [34] H. Zhang, W. Xiang, and J. Wen, “Dual Grid-Forming Control with Energy Regulation Capability of MMC-HVDC System Integrating Offshore Wind Farms and Weak Grids,” IEEE Transactions on Power Systems, vol. 39, no. 1, pp. 261-272, Jan. 2024.
    [35] W. Zhang, D. Remon, I. Candela, A. Luna, and P. Rodriguez, “Grid-Connected Converters with Virtual Electromechanical Characteristics: Experimental Verification,” CSEE Journal of Power and Energy Systems, vol. 3, no. 3, pp. 286-295, Sep. 2017.
    [36] National Grid ESO, “The Grid Code Issue 6 Revision 32”, May 2025.
    [37] A. Singh, V. Debusschere, N. Hadjsaid, X. Legrand, and B. Bouzigon, “Slow-Interaction Converter-Driven Stability in the Distribution Grid: Small-Signal Stability Analysis with Grid-Following and Grid-Forming Inverters,” IEEE Transactions on Power Systems, vol. 39, no. 2, pp. 4521-4536, Mar. 2024.
    [38] P. Imgart, A. Narula, M. Bongiorno, M. Beza, and J. R. Svensson, “External Inertia Emulation to Facilitate Active-Power Limitation in Grid-Forming Converters,” IEEE Transactions on Industry Applications, vol. 60, no. 6, pp. 9145-9156, Nov.-Dec. 2024.
    [39] M. Li and S. Wu, “Study on Dynamic Damping and Adaptive Control Strategy of Energy Storage Converter Based on VSG Control,” International Forum on Electrical Engineering and Automation (IFEEA), Shenzhen, China, pp. 1188-1193, Nov. 2024.
    [40] S. Gupta, V. Kekatos, and S. Chatzivasileiadis, “Optimal Design of Volt/VAR Control Rules of Inverters Using Deep Learning,” IEEE Transactions on Smart Grid, vol. 15, no. 5, pp. 4731-4743, Sep. 2024.
    [41] S. Dixit, N. K. Verma, and A. K. Ghosh, “Intelligent Fault Diagnosis of Rotary Machines: Conditional Auxiliary Classifier GAN Coupled with Meta Learning Using Limited Data,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-11, May 2021.
    [42] W. Sun, H. Wang, and R. Qu, “A Novel Data Generation and Quantitative Characterization Method of Motor Static Eccentricity with Adversarial Network,” IEEE Transactions on Power Electronics, vol. 38, no. 7, pp. 8027-8032, Jul. 2023.
    [43] J. Qiao, T. Pu, and X. Wang, “Renewable Scenario Generation Using Controllable Generative Adversarial Networks with Transparent Latent Space,” CSEE Journal of Power and Energy Systems, vol. 7, no. 1, pp. 66-77, Jan. 2021.
    [44] L. Yang, S. X. Yang, Y. Li, Y. Lu, and T. Guo, “Generative Adversarial Learning for Trusted and Secure Clustering in Industrial Wireless Sensor Networks,” IEEE Transactions on Industrial Electronics, vol. 70, no. 8, pp. 8377-8387, Aug. 2023.
    [45] Z. Pu, D. Cabrera, Y. Bai, and C. Li, “A One-Class Generative Adversarial Detection Framework for Multifunctional Fault Diagnoses,” IEEE Transactions on Industrial Electronics, vol. 69, no. 8, pp. 8411-8419, Aug. 2022.
    [46] L. Cui, K. Huang, Y. Zhong, Y. Zhang, and Q. H. Liu, “An Auxiliary Classifier Generative Method for Antenna Design and Optimization,” IEEE Transactions on Antennas and Propagation, vol. 73, no. 2, pp. 733-747, Feb. 2025.
    [47] Z. Meng, Q. Li, D. Sun, W. Cao, and F. Fan, “An Intelligent Fault Diagnosis Method of Small Sample Bearing Based on Improved Auxiliary Classification Generative Adversarial Network,” IEEE Sensors Journal, vol. 22, no. 20, pp. 19543-19555, Oct. 2022.
    [48] M. Zhang, G. Guo, T. Zhao, and Q. Xu, “DNN Assisted Projection Based Deep Reinforcement Learning for Safe Control of Distribution Grids,” IEEE Transactions on Power Systems, vol. 39, no. 4, pp. 5687-5698, Jul. 2024.
    [49] G. Avelino Sampedro, S. Ojo, M. Krichen, M. A. Alamro, A. Mihoub, and V. Karovic, “Defending AI Models Against Adversarial Attacks in Smart Grids Using Deep Learning,” IEEE Access, vol. 12, pp. 157408-157417, Oct. 2024.
    [50] S. Sivakumar and S. Sivakumar, “Activation Function Modulation in Generative Triangular Recurrent Neural Networks,” IEEE Access, vol. 10, pp. 45709-45725, Apr. 2022.
    [51] Hoon Chung, Sung Joo Lee, and Jeon Gue Park, “Deep Neural Network Using Trainable Activation Functions,” International Joint Conference on Neural Networks (IJCNN), Vancouver, Canada, pp. 348-352, Jul. 2016.
    [52] K. Bingi and B. R. Prusty, “Neural Network-Based Models for Prediction of Smart Grid Stability,” Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, pp. 1-6, Nov. 2021.
    [53] D. Syed, H. Abu-Rub, A. Ghrayeb, S. S. Refaat, M. Houchati, O. Bouhali, and S. Bañales, “Deep Learning-Based Short-Term Load Forecasting Approach in Smart Grid with Clustering and Consumption Pattern Recognition,” IEEE Access, vol. 9, pp. 54992-55008, Apr. 2021.

    無法下載圖示 校內:2030-07-08公開
    校外:2030-07-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE