| 研究生: |
王國華 Wang, Kao-Hua |
|---|---|
| 論文名稱: |
風力感應發電機經高壓直流傳輸線併聯市電之研究 The Study of Wind Induction Generators Using an HVDC Transmission System to Connect to a Utility Grid |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 168 |
| 中文關鍵詞: | 動態 、穩態 、穩定度 、高壓直流 、風力用感應發電機 |
| 外文關鍵詞: | stability, steady state, wind induction generators, HVDC, dynamics |
| 相關次數: | 點閱:78 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係分析風力感應發電機利用高壓直流傳輸線與市電系統併聯運轉時,整體系統之穩定度、動態與穩態特性等影響。在本論文中,係分別以單部與四部風力感應發電機為發電機組,經高壓直流傳輸線連接市電之架構作為研究模型,在三相平衡系統下採用交直軸等效電路模型,分別建立風、風渦輪機、感應發電機以及高壓直流傳輸線等之模型,並推導其數學模型來完成整體動態方程式,再利用特徵值來求出系統動態穩定度。在穩態方面,則分別對風速、市電端電壓、傳輸線的阻抗及整流器觸發角等量對系統特性之影響,做一詳細討論。在動態研究方面,完成風速變動對於本論文提出之架構的影響分析,並考慮發生干擾或故障時,可能對風力發電系統造成的影響做評估分析。
This thesis analyzes dynamic and steady-state performance of wind induction generators connected to a utility grid through HVDC transmission lines. Single wind induction generator and four wind induction generators are respectively connected to the utility grid through the HVDC transmission line for study. A d-q axis equivalent-circuit model is employed to establish the wind, wind turbine, induction generators, and HVDC transmission line to derive the complete dynamic equations of the studied system under three-phase balanced loading conditions. System eigenvalues are employed to determine the dynamic stability of the studied system. Steady-state performance of the studied system under different wind speeds, grid voltages, converter’s firing angles of HVDC line is examined. Dynamic characteristics of the studied system subject to variable wind speeds, disturbance conditions, and faulted conditions are also explored.
[1] Y. C. Lee and C. J. Wu, “Damping of power system oscillations with output feedback and strip eigenvalue assignment,” IEEE Transactions on Power Systems, vol. 10, no. 3, August 1995, pp. 1620-1626.
[2] K. G. Narendra, K. Khorasani, V. K. Sood, and R. V. Pate1, “Intelligent current controller for an HVDC transmission link,” IEEE Transactions on Power Systems, vol. 13, no. 3, August 1998, pp. 1076-1083.
[3] D. Jovcic, N. Pahalawaththa, and M. Zavahir, “Novel current controller design for elimination of dominant oscillatory mode on an HVDC line,” IEEE Transactions on Power Delivery, vol. 14, no. 2, April 1999, pp. 543-548.
[4] D. Jovcic, N. Pahalawaththa, and M. Zavahir, “Stability analysis of HVDC control loops,” IEE Proceedings-Generation, Transmission and Distribution, vol. 146, no. 2, March 1999, pp. 143-148.
[5] R. Bunch and D. Kosterev, “Design and implementation of AC voltage dependent current order limiter at pacific HVDC intertie,” IEEE Transactions on Power Delivery, vol. 15, no. 1, January 2000, pp. 293-299.
[6] N. M. Kirby, M. J. Luckett, and L. Xu, “HVDC transmission for large offshore wind farms,” AC-DC Power Transactions, no. 485, November 2001, pp. 162-168.
[7] K. H. Chan, J. A. Parle, N. Johnson, and E. Acha, “Real-time implementation of a HVDC-VSC application in a scaled-down wind energy conversion system(WECS),” AC-DC Power Transactions, no. 485, November 2001, pp. 169-174.
[8] S. Gomes, N. Martins, T. Jonsson, D. Menzies, and R. Ljungqvist, “Modeling capacitor commutated converters in power system stability studies,” IEEE Transactions on Power Systems, vol. 17, no. 2, May 2002, pp. 371-377.
[9] W. Lu and B. T. Ooi, “Optimal acquisition and aggregation of offshore wind power by multiterminal voltage-source HVDC,” IEEE Transactions on Power Delivery, vol. 18, no. 1, April 2003, pp. 201-206.
[10] C. Osauskas and A. Wood, “Small-signal dynamic modeling of HVDC systems,” IEEE Transactions on Power Delivery, vol. 18, no. 1, January 2003, pp. 220-225.
[11] K. R. Padiyar and N. Prabhu, “Modelling control design and analysis of VSC based HVDC transmission systems,” IEEE 2004 International Conference on Power System Technology, vol. 1, November 2004, pp. 774-779.
[12] X. Yang and C. Chen, “HVDC dynamic modelling for small signal analysis,” IEE Proceedings-Generation, Transmission and Distribution, vol. 151, no. 6, November 2004, pp. 740-746.
[13] M. Yin, G. Li, M. Zhou, and Y. Liu, “Analysis and control of wind farm incorporated VSC-HVDC in unbalanced conditions,” 2005 IEEE/PES Transaction and Distribution Conference, 2005, pp. 1-6.
[14] A. Reidy and R. Watson, “Comparison of VSC based HVDC and HVAC interconnections to a large offshore wind farm,” IEEE Power Engineering Society, vol. 1, June 2005, pp. 1-8.
[15] N. Fernandopulle and R. T. H. Alden, “Integration of HVDC control dynamics into transient energy functions,” Canadian Journal of Electrical and Computer Engineering, vol. 30, no. 1, Winter 2005.
[16] D. Xiang, L. Ran, J. R. Bumby, P. J. Tavner, and S. Yang, “Coordinated control of an HVDC link and doubly fed induction generators in a large offshore wind farm,” IEEE Transactions on Power Delivery, vol. 21, no. 1, January 2006, pp. 463-470.
[17] X. I. Koutiva, T. D. Vrionis, N. A. Vovos, and G. B. Giannakopoulos, “Optimal integration of an offshore wind farm to a weak AC grid,” IEEE Transactions on Power Delivery, vol. 21, no. 2, April 2006, pp. 987-994.
[18] D. Jovcic, “Interconnecting offshore wind farms using multiterminal VSC-based HVDC,” IEEE Power Engineering Society, June 2006, pp. 1-7.
[19] D. Jovcic and J. V. Milanovic, “Offshore wind farm based on variable frequency mini-grids with multiterminal DC interconnection,” AC and DC Power Transactions, March 2006, pp. 215-219.
[20] P. Bresesti, W. L. Kling, R. L. Hendriks, and R. Vailati, “HVDC connection of offshore wind farms to the transmission system,” IEEE Transactions on Energy Conversion, vol. 22, no. 1, March 2007, pp. 37-43.
[21] S. V. Bozhko, R. B. Giménez, R. Li, J. C. Clare, and G. M. Asher, “Control of offshore DFIG-based wind farm grid with line-commutated HVDC connection,” IEEE Transactions on Energy Conversion, vol. 22, no. 1, March 2007, pp. 71-78.
[22] Y. Y. Hsu and Li Wang, “Damping of a parallel AC-DC power system using PID power system stabilizers and rectifier current regulators,” IEEE Transactions on Energy Conversion, vol. 3, no. 3, September 1988, pp. 540-546.
[23] Li Wang, “A comparative study of damping schemes on damping generator oscillations,” IEEE Transactions on Power Systems, vol. 8, no. 2, May 1993, pp. 613-619.
[24] P. Kundur, Power System Stability and Control, New York: McGraw-Hill, 1994.
[25] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press Ames, 1980.
[26] 王醴,電力系統動態穩定度分析,國立台灣大學電機工程學系博士論文,民國七十七年六月。
[27] 林賜敬,分散式發電系統之穩定度研究,國立成功大學電機工程學系碩士論文,民國九十三年六月。
[28] 劉書瑋,市電併聯型風力感應發電機之研究,國立成功大學電機工程學系碩士論文,民國九十四年六月。
[29] 林俊宏,含旋角控制器之市電併聯型風力感應發電機之特性分析,國立成功大學電機工程學系碩士論文,民國九十五年六月。
[30] 張几文,離岸風力發電以不同傳輸方式連接市電系統之探討,國立中山大學電機工程學系碩士論文,民國九十五年十二月。