| 研究生: |
劉相瑋 Liu, Hsiang-Wei |
|---|---|
| 論文名稱: |
利用摻雜電洞傳輸層改善高分子有機發光二極體
之元件效率 Improvement of Polymer Light-Emitting Diodes by Doping the Hole-Transporting Layer |
| 指導教授: |
許渭州
Hsu, Wei-chou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 有機發光二極體 、MEH-PPV 、電洞傳輸層 、NPB摻雜 |
| 外文關鍵詞: | organic polymer light emitting diodes, MEH-PPV, hole transporting layer, NPB-doped |
| 相關次數: | 點閱:109 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在我們的實驗中,主要分成兩種結構的元件:單層元件和雙層元件(有電洞傳輸層),然後再比較電洞傳輸層對於元件特性的影響。一開始,我們使用O2電漿對ITO玻璃基板做處理,以便於清除表面的污染微粒和增加陽極的功函數。接下來是製作元件。單層元件的結構包含ITO/PEDOT:PSS/MEH-PPV/LiF/Al,而雙層元件的結構是單層元件加上電洞傳輸層,結構為ITO/PEDOT:PSS/電洞傳輸層/MEH-PPV/LiF/Al,元件的最大亮度和效率都有所提升。然而由於MEH-PPV的材料特性並不是相當適合用於電洞傳輸,所以我們發現使用小分子的電洞傳輸材料來彌補MEH-PPV的缺點是相當好的方法。NPB在小分子有機發光二極體是相當好的電洞傳輸材料。因此,我們將NPB摻雜進雙層元件的電洞傳輸層中以便於提升MEH-PPV電洞傳輸和電子阻隔的能力。我們發現元件特性會有明顯的改善從無摻雜的雙層元件(6990 cd/m2, 0.86 cd/A) 提升到10 wt%摻雜的(6150 cd/m2, 1.21 cd/A)和30 wt%摻雜(6490 cd/m2, 1.36 cd/A)。而且驅動電壓(亮度為500 cd/m2)也從無摻雜的3.86 V 減少到10 wt%摻雜的3.22 V和30 wt%摻雜的3.06 V,以便於達到低耗能、高效能之發光元件。
最後我們也使用一些物理分析來佐證我們的改善方法。例如AFM可以用來分析兩種材料混合後對表面粗糙度的改善。結晶性的改變則是利用XRD來探討NPB對MEH-PPV分子排列的影響。總之,我們將NPB摻雜進MEH-PPV不只有表面粗糙度的改善而且還有提升薄膜的結晶性,導致有更好的電洞傳輸能力和表面接觸,進而提升整體的元件效率。
In our study, we fabricated single-layer (basic device) and bi-layer structure (with the hole transporting layer) of PLED and compared their performance. At first, O2 plasma was used to clean the surface and increased the work function of ITO in order to be matched with LUMO (LUMOEc) of organic materials. And then, we added the hole transporting layer in basic device in order to delay hole transporting, resulting in a better recombination in emitting layer. For that reason, it’s very apparent that bi-layer structure had higher luminance and current efficiency than single layer structure. The bi-layer structure was ITO-glass/ PEDOT:PSS(40 nm)/ MEH-PPV(6mg/mL, 50 nm)/ MEH-PPV(6mg/mL, 90 nm)/ LiF(1 nm)/ Al (100 nm).
However, MEH-PPV was not a suitable hole transporting material because of its lower hole mobility. So, we discovered a great way to improve this drawback, blending NPB into MEH-PPV. As we know, NPB was a useful materials in small molecular OLED for the hole transporting layer. After adding NPB into MEH-PPV as HTL, the performance was improved very obviously from non-doped bi-layer structure (6990 cd/m2, 0.86 cd/A) to 30 wt% NPB-doped bi-layer structure (6490 cd/m2, 1.36 cd/A) and turn-on voltage (500 cd/m2) was also decreased from 3.86 V to 3.06 V, respectively. Hence, we could fulfill the dream of low power consumption and high efficiency PLED.
Finally, for the purpose of affirming the mechanism of NPB-doped MEH-PPV, we used some physical analysis such AFM and XRD to discuss the change of surface and crystallization. We could see that not only the surface roughness but also the crystallization was improved by NPB-doped method. Hence, NPB-doped method was a great way to improve the hole-transporting and electron-blocking ability for polymer materials.
Reference
[1] M. Pope, H. P. Kallmann, P. Magnante, J, “Electroluminescence in Organic Crystals” Chem. Phys. , 38, 2042, (1963).
[2] R.H. Partridge. Polymer 24, pp. 733–738, (1983).
[3] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett., 51, 913, (1987).
[4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature, Vol. 347, 11 OCTOBER (1990).
[5] J. Kido, K. Hongawa, K. Okuyama and K. Nagai, “Bright blue electroluminescence from poly(N-vinylcarbazole),” Appl. Phys. Lett., 63,19, 8 November (1993).
[6] A. J. Cadby, P.A. Lane, M. Wohlgenannt, C. An, Z. V. Vardeny, D.D.C. Bradley, “Optical studies of photoexcitations of poly(9,9-dioctyl fluorine),” Synthetic Metals, 111–112, 515–518, (2000).
[7] J. Kido, K. Hongawa, K. Okuyama and K. Nagai, “White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter llayer doped with three fluorescent dyes,” Appl. Phys. Lett., 64 (7), 14 February (1994).
[8] Y. Shi, J. Liu, and Y. Yang, “Device performance and polymer morphology in polymer light emitting diodes: The control of thin film morphology and device quantum efficiency,” J. Appl. Phys., Vol. 87, No. 9, 1 May 2000.
[9] J. Liu, Y. J. Shi, L. P. Ma, and Y. Yang, “Device performance and polymer morphology in polymer light emitting diodes: The control of device electrical properties and metal/polymer contact,” J. Appl. Phys., Vol. 88, No. 2, 15 July 2000.
[10] Jayesh M. Bharathan and Y. Yang, “Polymer/metal interfaces and the performance of polymer light-emitting diodes,” J. Appl. Phys., Vol. 84, No. 6, 15 September (1998).
[11] J. Liu, T. F. Guo and Y. Yang,” Effects of thermal annealing on the performance of polymer light emitting diodes,” J. Appl. Phys., Vol. 91, No. 3, 1 February (2002).
[12] S. R. Tseng, S. C. Lin, H. F. Meng, H. H. Liao, C. H. Yeh, H. C. Lai, S. F. Horng and C. S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett., 88, 163501, (2006).
[13] Q. J. Sun, J. H. Hou, C. H. Yang, Y. F. Li, and Y. Yang, “Enhanced performance of white polymer light-emitting diodes using polymer blends as hole-transporting layer,” Appl. Phys. Lett., 89, 153501, (2006).
[14] S. R. Tseng, S. C. Lin, H. F. Meng, H. H. Liao, C. H. Yeh, H. C. Lai, S. F. Horng and C. S. Hsu, ”High-efficiency blue multilayer polymer light-emitting diode based on poly(9,9-dioctylfluorene),” J. Appl. Phys., 101, 084510, (2007).
[15] Q. J. Sun, D. W. Chang, L. Dai, J. Grote, and R. Naik, “Multilayer white polymer light-emitting diodes with deoxyribonucleic acid-cetyltrimetylammonium complex as a hole-transporting/ electron-blocking layer,” Appl. Phys. Lett., 92, 251108, (2008).
[16] G.. Destriau, “Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole,” J. Chem, Phys., 38, 2024, (1963).
[17] B. Chen, C. S. Lee, P. Webb, Y. C. Chan, W. Gambling, H. Tian and W. Zhu, “Electroluminescence mechanism in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host,” J. Appl. Phys., Part 1, 39, 1190, (2000).
[18] M. Klessinger, J. Michl, “Exicted states and photochemistry of Organic Molecules,” VCH Publishers, New York (1995).
[19] Y. Liu, M. S. Liu, A. K. Y. Jen, “Organic light-emitting diodes (OLED) technology: materials, devices and display technologies,” Acta Polym. 50, 105, (1999).
[20] Robert Eisberg, Robert Resnick, “Quantum Physics of Atoms. Molecules, Solids, Nuclei, and Particles,” 2nd edition., p.313-316 (1974).
[21] M. A. Baldo, D. F. O Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, 395, 151, (1998).
[22] S. M. Sze, “Physics of semiconductor Devices,” 2nd edition., p.65, 301, (1985).
[23] S. M. Sze, “Physics of semiconductor Devices,” 2nd edition., p.261, (1985).
[24] S. Barth, U. Wolf, H. Bassler, P. Muller, H. Riel, h. Westweber, P. F. Seidler, and W. Riess, ”Photogeneration and transport of charge carriers in hybrid materials of conjugated polymers and dye-sensitized TiO2,” Phys. Rev., B 60, 8791, (1999).
[25] L. Burin, M. A. Ratner, “Temperature and field dependence of the charge injection from metal electrodes into random organic media,” J. Phys. Chem. A, 104, 4704, (2000).
[26] E. Fortin and F. L. Weichman, Phys.Status Solidi, 5, 515, (1964).
[27] U. K. Barik, S. Srinivasan, C. L. Nagendra, and A. Subrehmanyam, “Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen,” Thin Solid Film, 429, 129, (2003).
[28] J. Asbalter, A. Subrahman, “P-type transparent conducting In2O3–Ag2O thin films prepared by reactive electron beam evaporation technique,” J. Vac. Sci. Technol ., 18, 1672, (2000).
[29] G. I. N. Waterhouse, G. A. Bowmaker, J. B. Metson, “Oxidation of a polycrystalline silver foil by reaction with ozone,” Appl. Surf. Sci. 183, 191, (2001).
[30] A. A. Schmidt, J. Offermann, R. Anton, Thin Solid Films, 281, 105, (1966).
[31] L. S. hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes,” Appl. Phys. Lett., 78, 544, (2001).
[32] U. Lang, E. Muller, N. Naujoks, and J. Dual. “Microscopical investigations of PEDOT:PSS thin films,” Adv. Funct. Mater., 19, 1215-1220, (2009).
[33] Liam S. C. Pingree, Bradley A. Macleod, and David S. Ginger “The changing face of PEDOT:PSS films: Substrate, bias, and processing effects on vertical charge transport,” J. Phys. Chem. C, vol. 112, No. 21, (2008).
[34] Q. F. Xu, J. Y. Ouyang, Y. Yang. T. Ito, J. Kido,” Ultrahigh efficiency green polymer light-emitting diodes by nanoscale interface modification” Appl. Phys. Lett., 83, 23, (2003).T. Minami, K. Shimokawa, T. Miyata, J. Vac. Sci. Technol. 16, 1218, (1998).
[35] H. M. Lee, K. H. Choi, D. H. Hwang, L. M. Do, T. H. Zyung, ”Use of ionomer as an electron injecting and hole blocking material for polymer light-emitting diode,” Appl. Phys. Lett., 72, 19, (1998).
[36] J. S. Huang, G. Li, E. Wu, Q. F. Xu, and Y. Yang, “Achieving high-efficiency Polymer White-Light-Emitting Devices,” Adv. Mater., 18, 114–117, (2006).
[37] H. T. Lu, M. Yokoyama, “Plasma preparation on indium-tin-oxide anode surface for organic light emitting diodes,” J. Cry. Grow., 260, 286-190, (2004).
[38] S. N. Hsieh, T. Y. Kuo, P. C. Hsu, T. C. Wen, and T. F. Guo, “Study of polymer blends on polymer light-emitting diodes,” Mate. Chem. Phys., 106, 70-73, (2007).
[39] K. L. Babcock, and C. B. Prater, “Phase imaging : Beyond Topography,” Digital Instruments, Inc.
[40] Y. Kim, and C. M. Lieber, “Machining oxide thin films with an atomic force microscope : pattern and object formation on the nanometer scale,” Science, 257, 375, (1992).
[41] A. R. Tameev, S. V. Novikov, A. V. Vannikov, E. M. Nechvolodova, and S. A. Arnautov, “CHARGE MOBILITY AND PHOTOVOLTAIC BEHAVIOR OF MEH-PPV FILMS PREPARED BY VARIOUS METHODS,” 1-4244-0016-3, IEEE (2006).
[42] J. Gao, H. You, Z. P Qin, J. F. Fang, D. G. Ma, X. H. Zhu, and W. Huang, “High efficiency polymer electrophosphorescent light-emitting diodes,” Semicond. Sci. Technol., 20, 805-808, (2005).
[43] S. Quan, F. Teng, Z. Xu, L. Qian, Y. Wang, “Improved polymer light-emitting diodes by the tuning of charge balance,” Solid. State. Electro., 50, 1506-1509, (2006).
[44] Adam J. Moulé and K. Meerholz “Controlling Morphology in Polymer–Fullerene Mixtures,” Adv. Mater., 20, 240–245, (2008).
[45] J. Liu, and Y. Yang, “Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices,” Adv. Funct. Mater., 6, 11, (2001).
[46] S. B. Shin, S. C. Gong, H. M. Lee, J. G. Jang, M. S. Gong, S. O. Ryu, J. Y. Lee, Y. Ch. Chang, and H. J. Chang, “Improving light efficiency of white polymer light emitting diodes by introducing the TPBi exciton protection layer,” Thin Solid Films., 517, 4143–4146, (2009).
[47] F. Shen, F. He, D. Lu, Z, Xie, W, Xie, Y. Ma, and B. Hu, “Bright and colour stable white polymer light-emitting diodes,” Semicond. Sci. Technol., 21, L16-L19, (2006).
[48] G. T. Chen, S. H. Su, C. C. Hou, M. Yokoyama, “Effects of thermal annealing on performance of organic light-emitting diodes,” J. Electrochem. Soc., 154 (5) J159-J162, (2007).
[49] M. C. Sun, J. H. Jou, W. K. Weng, Y. S. Huang, “Enhancing the performance of organic light-emitting devices by selective thermal treatment,” Thin solid films., 491, 206-263, (2005).
[50] S. Kazim, V. Ali, M. Zulfequar, M. Mazharul Haq, M. Husain, “Electrical transport properties of poly[2-methoxy-5-(2’-ethyl hexyloxy)-1,4-phenylene vinylene] thin films doped with acridine orange dye,” Physica B., 393, 310-315, (2007).
[51] C. H. Chou, S. L. Hsu, S. W. Yeh, H. S. Wang, and K. H. Wei, “Enhanced luminance and thermal properties of Poly(phenylenevinylene) copolymer presenting side-chain-tethered Silsesquioxane units,” Macromolecules., 38, 9117-9123, (2005).
校內:2020-12-31公開