簡易檢索 / 詳目顯示

研究生: 劉啟民
Liu, Chi-Min
論文名稱: 利用Lidar儀器量測颱風風力特性
Observations of wind characteristics using Lidar in typhoons
指導教授: 吳毓庭
Wu, Yu-Ting
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 64
中文關鍵詞: 光達冪定律對數定律風速風向紊流強度
外文關鍵詞: Windcube V2 Lidar, Power law, Log law, Wind speed, Wind direction, Turbulence intensity
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來能源短缺的問題,使得綠色能源受到重視,其中風能為重要的項目之一,為了能得到可觀的風力發電量導致離岸風場的發展快速,使得風資源評估以及風力資料量測變得相當重要,而傳統的現場量測儀器為氣象塔上的杯式風速計、螺旋槳式風速計、超音生波風速計以及風向標,但是這些儀器只能量測固定高層的風力資料。隨著風機尺寸越來越大,導致建造氣象塔的成本以及難度增加,故現今許多研究學者使用固定式光達(Lidar)進行現場量測並與傳統風速計進行交叉驗證,但是這些研究文獻多半在一般的氣候條件下所進行的,鮮少在極端氣候(例如:颱風)下量測,所以本研究在颱風Megi、Meranti、Nepart、Soudelor下將固定式光達佈署在國立成功大學校園內進行現場量測,並且與台南氣象站的傳統儀器交叉驗證。
    本研究使用Windcube V2 Lidar儀器進行垂直高度風速量測,由於成大校園與台南氣象站的兩側量測高度不同,所以我們使用Lidar的資料藉由Power Law進行一階線性回歸分析求得與台南測站相同高度的風力資料進行驗證,其驗證結果顯示在颱風氣候條件下使用Lidar量測風力資料並與台南測站進行比較的結果是可被接受的,除了上述驗證之外,本研究使用Power Law和Log Law求出風速剖面並探討颱風的風力特性,最後提供在颱風條件下的α值、表面粗糙度、紊流強度等範圍。

    Recently, green energy receives a lot of attention due to a problem with an energy shortage. The wind energy plays an important role in green energy. To obtain a large amount of power generation, the wind farm in offshore is rapid development, which leads to wind farm evaluation and wind measurement becomes more important. For tTraditional field measurement, it is usually used adopted cup anemometer, propellerR.M. Young anemometer, and wind vane installed on the meteorological mast to collect the wind data. These traditional instruments can measure wind data at fixed heights. But, dDue to the cost of wind turbines increases with the size of wind turbines, light detection and ranging (Lidar) is used to the field measurement by researchers. Confirming the accuracy of the Lidar, the wind data from Lidar is used to validate with traditional instruments (i.e., cup anemometer, propeller anemometer, sonic anemometer, and wind vane). However, the literature of the measured wind data by using the Lidar during typhoon events is very lack. Therefore, this study focus on using Lidar for the field measurement during typhoons of Megi, Meranti, Nepartak, and Soudelor to validate with a R.M. Youngpropeller anemometer installed on Tainan weather Weather stationStation(TWS). In this study, we deploy Windcube V2 Lidar in National Cheng Kung University (NCKU) campus to collect instantaneous wind data, which is converted to radial wind data with Doppler effect. The radial wind data along laser beams from the Lidar is used to converted horizontal wind data, such as wind speed or wind direction. Due to differentce measurement heights between the Lidar and TWS, the wind data from the Lidar performs linear regression analysis with power law to obtain wind data at the same measured height as TWS. Then, the wind data from the linear regression analysis is used for validation with the wind data from the R.M. Youngpropeller anemometer and wind vane installed on TWS. The results show that the validation wind data between the Lidar and the R.M. Young anemometer is acceptable during the typhoon events. In addition to the validation, this study uses the power law and log law to obtain wind speed profiles during the typhoon events to discuss wind conditions about typhoons which are the ranges of α, surface roughness, and turbulence intensity.

    摘要 I Abstract II Contents IV List of Tables V List of Figures VI Nomenclature IX Chapter 1. Introduction 1 Chapter 2. Case study 8 2-1 Basic Information of Each Typhoon 8 2-1.1 Typhoon of Megi 9 2-1.2 Typhoon of Meranti 9 2-1.3 Typhoon of Nepartak 10 2-1.4 Typhoon of Soudelor 10 2-1.5 Typhoon Path 10 2-2 Instruments 13 2-2.1 Windcube V2 Lidar 13 2-2.2 R.M Young anemometer 17 2-2.3 Instrument locations 18 Chapter 3. Methodology 20 3-1 Principle of Lidar measurement 20 3-2 Velocity Transformation 22 3-3 Wind Data 25 3-3.1 Wind speed and wind direction 25 3-4 Wind Profile 26 3-4.1 Power law 27 3-4.2 Logarithmic law 28 3-5 Linear Regression 29 3-6 Coefficient of Determination (R2) 30 Chapter 4. Results and Discussion 31 4-1. Comparison of wind speed for Lidar and TWS 31 4-2. Comparison of wind direction for Lidar and TWS 42 4-3. Wind conditions in typhoon 48 Chapter 5. Conclusions 57 Chapter 6. References 59

    Chapter 6. References
    1. Rogelj, J., et al., Paris Agreement climate proposals need a boost to keep warming well below 2 C. Nature, 2016. 534(7609): p. 631.
    2. Dresselhaus, M. and I. Thomas, Alternative energy technologies. Nature, 2001. 414(6861): p. 332.
    3. Nordell, B., Thermal pollution causes global warming. Global and Planetary Change, 2003. 38(3-4): p. 305-312.
    4. Holt, M., R.J. Campbell, and M.B. Nikitin, Fukushima nuclear disaster. 2012: Congressional Research Service.
    5. Holländer, L., Caught in Diversification: methodological pluralism to review and investigate local climate mitigation actions in Taichung City, Taiwan. Master Thesis Series in Environmental Studies and Sustainability Science, 2017.
    6. 行政院. “Green Energy Island,”. 2016; Available from: https://www.ey.gov.tw/Goals/328B08CA8B5E71D1.
    7. "ENERGY STATISTICS HANDBOOK 2017".
    8. 行政院. "Nuclear Green Act". 2018; Available from: https://zh.wikipedia.org/wiki/2018年以核養綠公投案.
    9. Jacobson, M.Z. and M.A. Delucchi, Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy, 2011. 39(3): p. 1154-1169.
    10. Chang, T.-J., et al., Evaluation of the climate change impact on wind resources in Taiwan Strait. Energy Conversion and Management, 2015. 95: p. 435-445.
    11. Chen, Y.-H., et al., Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan. Applied Energy, 2013. 103: p. 145-154.
    12. 千架海陸風力機資訊整合平台. Available from: http://www.twtpo.org.tw/.
    13. Chiang, S.-H. and K.-T. Chang, The potential impact of climate change on typhoon-triggered landslides in Taiwan, 2010–2099. Geomorphology, 2011. 133(3-4): p. 143-151.
    14. 交通部中央氣象局. "平均一年中有多少個颱風侵襲臺灣?". Available from: https://www.cwb.gov.tw/V7/knowledge/encyclopedia/ty039.htm.
    15. 台灣網路科教館, "臺灣地區常見的災害性天氣".
    16. Peeters, B., J. Maeck, and G. De Roeck, Vibration-based damage detection in civil engineering: excitation sources and temperature effects. Smart materials and Structures, 2001. 10(3): p. 518.
    17. Kim, D., et al., A comparison of ground-based LiDAR and met mast wind measurements for wind resource assessment over various terrain conditions. Journal of Wind Engineering and Industrial Aerodynamics, 2016. 158: p. 109-121.
    18. Sanz Rodrigo, J., et al., Multi-site testing and evaluation of remote sensing instruments for wind energy applications. Renewable Energy, 2013. 53: p. 200-210.
    19. Shu, Z.R., et al., Observations of offshore wind characteristics by Doppler-LiDAR for wind energy applications. Applied Energy, 2016. 169: p. 150-163.
    20. Kim, J.-Y., et al., Evaluation and characterization of offshore wind resources with long-term met mast data corrected by wind lidar. Renewable Energy, 2018.
    21. Peña, A., et al., Offshore wind profiling using light detection and ranging measurements. Wind Energy, 2009. 12(2): p. 105-124.
    22. Cheynet, E., et al., Assessing the potential of a commercial pulsed lidar for wind characterisation at a bridge site. Journal of Wind Engineering and Industrial Aerodynamics, 2017. 161: p. 17-26.
    23. Lane, S.E., J.F. Barlow, and C.R. Wood, An assessment of a three-beam Doppler lidar wind profiling method for use in urban areas. Journal of Wind Engineering and Industrial Aerodynamics, 2013. 119: p. 53-59.
    24. Lang, S. and E. McKeogh, LIDAR and SODAR Measurements of Wind Speed and Direction in Upland Terrain for Wind Energy Purposes. Remote Sensing, 2011. 3(9): p. 1871-1901.
    25. Karthikeya, B.R., P.S. Negi, and N. Srikanth, Wind resource assessment for urban renewable energy application in Singapore. Renewable Energy, 2016. 87: p. 403-414.
    26. Li, J. and X. Yu, LiDAR technology for wind energy potential assessment: Demonstration and validation at a site around Lake Erie. Energy Conversion and Management, 2017. 144: p. 252-261.
    27. Rehman, S., M.A. Mohandes, and L.M. Alhems, Wind speed and power characteristics using LiDAR anemometer based measurements. Sustainable Energy Technologies and Assessments, 2018. 27: p. 46-62.
    28. Smalikho, I.N., et al., Lidar Investigation of Atmosphere Effect on a Wind Turbine Wake. Journal of Atmospheric and Oceanic Technology, 2013. 30(11): p. 2554-2570.
    29. Iungo, G.V., Y.-T. Wu, and F. Porté-Agel, Field Measurements of Wind Turbine Wakes with Lidars. Journal of Atmospheric and Oceanic Technology, 2013. 30(2): p. 274-287.
    30. Iungo, G.V. and F. Porté-Agel, Measurement procedures for characterization of wind turbine wakes with scanning Doppler wind LiDARs. Advances in Science and Research, 2013. 10(1): p. 71-75.
    31. Iungo, G.V. and F. Porté-Agel, Volumetric scans of wind turbine wakes performed with three simultaneous wind LiDARs under different atmospheric stability regimes. Journal of Physics: Conference Series, 2014. 524: p. 012164.
    32. Käsler, Y., et al., Wake Measurements of a Multi-MW Wind Turbine with Coherent Long-Range Pulsed Doppler Wind Lidar. Journal of Atmospheric and Oceanic Technology, 2010. 27(9): p. 1529-1532.
    33. 經濟部能源局, 能源供需概況分析.
    34. 國家災害防救科技中心, 2016年莫蘭蒂予馬勒卡颱風災害報告. 2016.
    35. 國家災害防救科技中心, 2016年梅姬災害報告. 2016.
    36. 國家災害防救科技中心, 2016年尼伯特災害報告. 2016.
    37. 國家災害防救科技中心, 2015年蘇迪勒災害調查彙整報告. 2015.
    38. Ho, C.-H., et al., Interdecadal changes in summertime typhoon tracks. Journal of Climate, 2004. 17(9): p. 1767-1776.
    39. McTaggart-Cowan, R., et al., Revisiting the 26.5 C sea surface temperature threshold for tropical cyclone development. Bulletin of the American Meteorological Society, 2015. 96(11): p. 1929-1943.
    40. Canadillas, B., A. Bégué, and T. Neumann. Comparison of turbulence spectra derived from LiDAR and sonic measurements at the offshore platform FINO1. in Proceedings of the 10th German Wind Energy Conference, DEWEK. 2010.
    41. Powell, D.C. and C. Elderkin, An investigation of the application of Taylor's hypothesis to atmospheric boundary layer turbulence. Journal of the atmospheric sciences, 1974. 31(4): p. 990-1002.
    42. Singh, U.N., P.J.M. Clive, and G. Pappalardo, Lidar and resource assessment for wind power applications: the state of the art. 2008. 7111: p. 711107.
    43. Gualtieri, G. and S. Secci, Methods to extrapolate wind resource to the turbine hub height based on power law: A 1-h wind speed vs. Weibull distribution extrapolation comparison. Renewable Energy, 2012. 43: p. 183-200.
    44. Liu, H., Wind engineering: a handbook for structural engineering. 1990: Pearson Education.
    45. Gkioulekas, I. and L.G. Papageorgiou, Piecewise regression analysis through information criteria using mathematical programming. Expert Systems with Applications, 2019. 121: p. 362-372.
    46. Taylor, R., Interpretation of the correlation coefficient: a basic review. Journal of diagnostic medical sonography, 1990. 6(1): p. 35-39.

    下載圖示 校內:2024-06-30公開
    校外:2024-06-30公開
    QR CODE