簡易檢索 / 詳目顯示

研究生: 鄭忠楠
Zheng, Zhong-Nan
論文名稱: 改良式模糊粒子群演算法應用於無線傳能最佳線圈填滿度設計
Application of Adaptive Weighted Fuzzy Particle Swarm Optimization to the Wireless Power Transfer Coil Optimized Fullness Design
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 51
中文關鍵詞: 非接觸式電能傳輸電磁感應線圈粒子群演算法
外文關鍵詞: wireless power transfer, electromagnetic induction coil, particle swarm optimization
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一套非接觸式電能傳輸系統之最佳化線圈填滿度設計流程。有鑑於在設計非接觸電能傳輸系統中當感應線圈設計不良時,系統傳能效率會不如預期,傳統設計感應線圈只能使用經驗法則,實際繞製線圈並測試該線圈是否有達到理想需求,因此本文提出一方法,有限元素模擬、ANFIS數學模型及改良式模糊粒子群演算法在擬定規格之情形下,找出符合規格之最佳線圈填滿度設計方法,以解決在設計線圈時無法設計出最佳線圈導致傳輸效率低落的情況。設計流程為利用有限元素模擬軟體建立ANFIS數學模型再使用改良式模糊粒子群演算法尋找該規格下之最佳解,接著與對照組線圈做趨勢驗證,實驗結果顯示,量測最佳化線圈與對照組線圈系統輸出功率,比較整體系統效率為最佳化線圈83.14 %較高。

    The optimal coil design process for a wireless power transfer system is proposed in this study. In consideration of the effect of bad induction coil design in the wireless power transfer system on the system power transfer efficiency, traditional design of induction coil simply uses rules of thumb and the actual winding coil is tested the achievement to the ideal requirement. A system combined with algorithm to find out the optimal coil design, according to the preset specifications, is proposed in this study to solve the problem of low transmission efficiency. For the design process, Finite Element is utilized for establishing the ANFIS model and adaptive weighted fuzzy particle swarm optimization is used for searching the optimal solution under the specifications. It is then tested and compared with the reference coil. The experimental result reveals that, by measuring the system output power between the optimal coil and the reference coil, the overall system efficiency is increased to 83.14 %.

    摘 要 I EXTENDED ABSTRACT II 誌謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 研究背景 1 1-2 國內外文獻回顧 2 1-3 研究動機與目的 3 1-4 論文架構 5 第二章 非接觸式電能傳輸線圈設計架構探討 6 2-1簡介 6 2-2非接觸式電能傳輸之方式探討 6 2-2-1電磁感應式 6 2-2-2電磁共振式 7 2-2-3射頻式 8 2-2-4電容耦合式 9 2-2-5非接觸式電能傳輸方式比較 10 第三章 系統硬體電路架構與線圈最佳化設計 11 3-1前言 11 3-2系統架構說明 11 3-3硬體電路介紹 12 3-4 非接觸式電能傳輸最佳線圈填滿度之設計流程 14 3-4-1 ANFIS建立非接觸式感應線圈模型 15 3-4-2 粒子群演算法 18 3-4-3 改良式模糊粒子群演算法 19 3-4-4 最佳化感應線圈規格 25 3-5非接觸式電能傳輸系統之分析與驗證 29 3-5-1非接觸式電能傳輸系統架構等效電路模型分析 29 3-5-2 諧振架構之電路及補償電容分析 30 第四章 系統模擬與實驗結果 35 4-1簡介 35 4-2系統規格與硬體電路介紹 35 4-3非接觸式電能傳輸系統之電路模擬 38 4-4系統波形量測及分析 41 4-4-1 系統整體電路特性分析 41 4-4-2 非接觸式電能傳輸系統對照組線圈實驗 43 4-5實驗結果與討論 45 第五章 結論與未來展望 46 5-1結論 46 5-2未來研究方向 47 參考文獻 48

    [1] L. Chen, S. Liu, Y. C. Zhou, and T. J. Cui, “An optimizable circuit structure for high-efficiency wireless power transfer,” IEEE Trans. Ind. Electron., vol. 60, no. 01, pp. 339–349, Dec. 2013.
    [2] J. Song, M. Liu, and C. Ma, “Design methodology of the power receiver with high efficiency and constant output voltage for megahertz wireless power transfer,” IEEE Intermational Conference IESES , pp. 397–602, Apr. 2018.
    [3] J. Song, M. Liu, and C. Ma, “Efficiency optimization and power distribution design of a megahertz multi-receiver wireless power transfer system,” IEEE PELS Workshop on Emerging Technologies, pp. 54–58, Jun. 2017.
    [4] M. Liu, C. Zhao, J. Song, and C. Ma, “Battery Charging Profile-Based Parameter Design of A 6.78-MHz Class E2 Wireless Charging System,” IEEE Transactions on Industrial Electronics, vol. 46, no. 99, Mar. 2017.
    [5] J. Park, Y. Tak, Y. Kim, Y. Kim, and S. Nam, “Investigation of adaptive matching methods for near-field wireless power transfer,” IEEE Trans. Antennas Propoagation, vol. 59, no. 5, pp. 1769–1773, Mar. 2011.
    [6] Y. D. Tak, J. M. Park, and S. W. Nam, “Mode-based analysis of resonant characteristics for near-field coupled small antennas,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1238–1241, Nov. 2009.
    [7] H. Li, J. Fang, S. Chen, Y. Tang, and K. Wang, “A pulse density modulation method for ZVS full-bridge converters in wireless power transfer systems,” IEEE Applied Power Electronics Conference and Exposition, pp. 3143–3148, Apr. 2018.
    [8] H. Li, K. Wang, J. Fang, and Y. Tang, “Pulse Density Modulated ZVS Full-Bridge Converters for Wireless Power Transfer Systems,” IEEE Transactions on Power Electronics, pp. 1–1, Mar. 2018.
    [9] B. Wang, K. Teo, T. Nishino, W. Yerazunis, J. Barnwell, and J. Zhang, “Experiments on wireless power transfer with metamaterials,” Appl. Phys. Lett., vol. 98, pp. 254101–254103, Jun. 2011.
    [10] J. Bito, S. Jeong, and M. M. Tentzeris, “A Real-time Electrically Controlled Active Matching Circuit Utilizing Genetic Algorithms for Wireless Power Transfer to Biomedical Implants,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 2, pp. 365–374, Jan. 2016.
    [11] M. Schuetz, A. Georgiadis, A. Collado, and G. Fischer, “A particle swarm optimizer for tuning a software-defined highly configurable wireless power transfer platform,” Proc. IEEE Wireless Power Transf. Conf., pp. 1–4, May 2015.
    [12] T. Noda, T. Nagashima, X. Wei, M. K. Kazimierczuk, and H. Sekiya, “Design Procedure for Wireless Power Transfer System With Inductive Coupling-Coil Optimizations Using PSO,” IEEE International Symposium on Circuits and Systems, pp. 646–649, Aug. 2016.
    [13] T. Noda, T. Nagashima, and H. Sekiya, “A design of inductively coupled wireless power transfer system with coupling coil optimization,” Proc. IEEE INTELEC, pp. 864–869, Sep. 2015.
    [14] A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis experimental results and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544–554, Mar. 2011.
    [15] H. S. Kim, and J. H. Kim, “Shielded coil structure suppressing leakage magnetic field from 100W-class wireless power transfer system with higher efficiency,” Proc. IEEE Microw. Workshop Ser. Innov. Wireless Power Transmiss. Technol. Syst. Appl., pp. 83–86, Jun. 2012.
    [16] J. Kim et al., “Coil design and shielding methods for a magnetic resonant wireless power transfer system,” Proc. IEEE, vol. 101, no. 6, pp. 1332–1342, Mar. 2013.
    [17] T. Campi, S. Cruciani, and M. Feliziani, “Magnetic shielding of wireless power transfer systems,” Int. Electromagn. Compat. Symp., pp. 422–425, Dec. 2014.
    [18] T. Imura, and Y. Hori, “Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4746–4752, Feb. 2011.
    [19] C. J. Chen, T. H. Chu, C. L. Lin, and Z. C. Jou, “A study of loosely coupled coils for wireless power transfer,” IEEE Trans. Circuitsand Syst.—Part II: Express Briefs, vol. 57, no. 7, pp. 536–540, Jun. 2010.
    [20] Z. Xiu, S. L. Ho, and W. N. Fu, “Quantitative analysis of a wireless power transfer cell with planar spiral structures,” IEEE Trans. Magn., vol. 47, no. 10, pp. 3200–3203, Sep. 2011.
    [21] C. K. Lee, W. X. Zhong, and S. Y. R. Hui, “Effects of magnetic coupling of non-adjacent resonators on wireless power domino-resonator systems,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1905–1916, Apr. 2012.
    [22] N. Hasan, T. Yilmaz, R. Zane, and Z. Pantic, “Multi-Objective Particle Swarm Optimization Applied to the Design of Wireless Power Transfer Systems,” 3 rd IEEE Wireless Power Transfer Conference , July 2015.
    [23] S. Li, W. Li, J. Deng, and C. C. Mi, “A double-sided LCC compensation network and its tuning method for wireless power transfer,” IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 1–12, Aug. 2015.
    [24] F. Lu, H. Hofmann, J. Deng, and C. Mi, “Output power and efficiency sensitivity to circuit parameter variations in double-sided LCC-compensated wireless power transfer system,” Proc. IEEE Appl. Power Electr. Conf., pp. 597–601, May. 2015.
    [25] M. Kiani, U. M. Jow, and M. Ghovanloo, “Design and optimization of a 3-coil inductive link for efficient wireless power transmission,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 579–591, July 2011.
    [26] T. Yilmaz, N. Hasan, R. Zane, and Z. Pantic, “Multi-objective optimization of circular magnetic couplers for wireless power transfer applications,” IEEE Trans. Magn., vol. 53, no. 8, Apr. 2017.
    [27] I. Khan, M. A. Yar, M. R. Khan, F. Khan, and W. T. Khan, “Bench top wireless power transmission using magnetic resonance for multiple devices,” 2017 Progress in Electromagnetics Research Symposium – Fall, pp. 3092–3099, Feb. 2017.
    [28] Y. Shi, and R. C. Eberhart, “A modified particle swarm optimizer,” Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69–73, May 1998.
    [29] M. Clerc, and J. Kennedy, “The particle swarm-explosion stability and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput., vol. 6, no. 1, pp. 58–73, Aug. 2002.
    [30] A. Chatterjee, and P. Siarry, “Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization,” Comput. Oper. Res., vol. 33, no. 3, pp. 859–871, Mar. 2006.
    [31] J. Jie, J. Zeng, C. Han et al., “Knowledge-based cooperative particle swarm optimization,” Applied mathematics and Computation, pp. 861–873, Nov. 2008.
    [32] A. M. Abdelbar, S. Abdelshahid, and D. C. Wunsch, “Fuzzy PSO: A generalization of particle swarm optimization,” in Proceedings of International Joint Conference on Neural Networks, pp. 1086–1091, Dec. 2005.
    [33] Y. T. Juang, S. L. Tung, and H. C. Chiu, “Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions,” Inform. Sci., vol. 181, pp. 4539–4549, Oct. 2011.
    [34] 邱進東,「改良式粒子群演算法最佳化設計」,德霖學報,第27期,2014。
    [35] 洪冠豪,「改良式粒子群優化演算法於桁架結構最佳化設計之應用」,國立交通大學土木工程學系碩士論文,2010。
    [36] 黃大鎔,「改良式粒子群演算法及其在螺旋電感最佳化設計之應用」,國立中央大學電機工程學系碩士論文,2016。
    [37] 莊凱智,黃士滔,「應用改良式粒子群演算法於旅行銷售員問題」,工程科技與教育學刊,第八卷,第三期,2011。
    [38] 溫正,MATLAB智能算法,清華大學出版社,2017。
    [39] 劉子溢,「電動車寬頻帶與高效率無線電能傳輸系統研製」,國立成功大學電機工程學系碩士論文,2015。
    [40] 蔡秉峯,「結合田口法與基因演算法於無線傳能系統最佳錯位容忍線圈設計」,國立成功大學電機工程學系碩士論文,2016。
    [41] 郭哲綸,「電動車無線電能傳輸系統之線圈自動定位研究」,國立成功大學電機工程學系碩士論文,2017。
    [42] Eugen Coca, “Wireless Power Transfer – Fundamentals and Technologies,” IntechOpen, 2016.
    [43] TMS320F28335 Datasheet, Texas Instruments Technology Inc, 2009. [Online] Available: http://www.farnell.com/datasheets/1719426.pdf.
    [44] CD40106B Datasheet, Texas Instruments Technology Inc, 2003. [Online] Available: http://www.ti.com/lit/ds/symlink/cd40106b-mil.pdf.
    [45] IR2110 Datasheet, Infineon Technology Inc, 2003.[Online] Available: https://www.infineon.com/dgdl/ir2110.pdf?fileId=5546d462533600a4015355c80333167e.
    [46] J.-S.R. Jang, “ANFIS : adaptive-network-based fuzzy inference system,” IEEE Transactions on Systems Man and Cybernetics, vol. 23, no. 3, pp. 665–685, May 1993.
    [47] R. C. Eberhart, and J. Kennedy, “A new optimizer using particle swarm theory,” Proc. 6th Int. Symp. Micromachine Human Sci., pp. 39–43, Oct. 1995.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE