研究生: |
張哲偉 Chang, Che-Wei |
---|---|
論文名稱: |
建立可顯示核醣體在信使核糖核酸上結合位置的視覺化介面 Construction of a viewer which provides ribosome binding positions on mRNAs |
指導教授: |
吳謂勝
Wu, Wei-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 38 |
中文關鍵詞: | 轉譯調控 、蛋白質合成失調 、基因表現量 、核醣體結合位置分析 |
外文關鍵詞: | Translation, Gene expression, Protein synthesis disorders, Ribosome profiling |
相關次數: | 點閱:100 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
轉譯調控在蛋白質合成中扮演著很重要的角色,蛋白質合成失調會使細胞產生異常的生理作用,更嚴重的會導致疾病的產生、癌細胞的惡化等情況產生。目前大多採用核糖體結合位置分析來研究轉譯調控機制,藉由核糖體結合位置分析來探討蛋白質合成量的多寡、基因表現量與各個區段核糖體結合的情況。近年來,研究學者紛紛投入全基因組信息的研究當中,促使著核醣體位置分析的研究數據不斷的產出,如何規劃與整合相關數據成了未來的一大需求。目前,有整合RPF(ribosome profiling)數據資料的網站有GWIPS、RPFdb兩大網站,RPFdb、GWIPS網站都有利用圖形化介面呈現核糖體各個位置的結合狀況,而RPFdb網站透過RPKM定義基因表現量,這是在GWIPS網站看不到的。此外,兩個網站有一個共通點,那就是資料進行映射(mapping)是映射到整個全基因組,讓使用者可以觀看整個基因的表現過程,但如果一個基因有多個Isoform,我只能看到基因整體的表現,但是無法去細看各個Isoform的表現差異。為了讓使用者可以深入了解基因底下各個Isoform的表現情況,我們映射的方式改為映射到轉錄組(Transcriptome)上,並且搭配生物分析軟體RSEM來進行映射的分析,然後再經過Normalize每份RPF數據資料,讓基因可以在不同RPF數據資料之間能在同一水平下互相比較基因表現量、Isoform表現量。最後,將RPF數據資料存在資料庫內。使用者只要透過網頁,就能觀看蛋白質合成情形、基因的表現量、Isoform的表現量。我們將此網站命名為RFviewer(ribosome footprinting viewer),RFviewer網站提供三個功能:(1)利用圖形化介面呈現核糖體各個位置的結合狀況(2)提供基因表現量(3) 提供Isoform表現量。透過RFviewer網站,我們拿了兩種例子來做分析:(1)同一基因底下各個Isoform的表現差異,分別使用了基EGFR、BRCA1、CDH13三種基因(2)基因與基因之間的表現差異,使用了CCNG1、CCNG2兩個基因來互相比較。由此看出RFviewer網站是一個非常強大的網站工具,用來輔助研究學者進行ribosome profiling的研究。RFviewer網址為: http://cosbi4.ee.ncku.edu.tw/RFviewer/
Translational regulation plays an important role in protein synthesis. Misregulation of protein synthesis will induce the abnormal cell physiology and lead to several diseases like inflammation and cancer development. Recently, an emerging technique named "ribosome profiling" was developed to study the translational regulation mechanism. By ribosome binding position analysis to compare the binding pattern of different isoform expression to gain more accurate understanding of protein synthesis in the cell. In order to let the user understand the expression of the gene and isoform, we mapped to the transcriptome. With the RSEM software for mapping analysis, and then through the Normalize each RPF data. So that users can also compare the binding pattern of different isoform expression to gain more accurate understanding of protein synthesis in the cell. Finally, we save the ribosome profiling data into the database. We named the website is RFviewer(ribosome footprinting viewer).The functions of provided are as follows:(1) A viewer which provides ribosome binding positions on mRNAs(2)Gene expression(3)Isoform expression. For ribosome binding position analysis of scholars, RFviewer website will be a very powerful auxiliary tool. RFviewer website is available online at http://cosbi4.ee.ncku.edu.tw/RFviewer/.
[1]Graifer, Dmitri M., et al. "mRNA binding track in the human 80S ribosome for mRNA analogues randomly substituted with 4-thiouridine residues." Biochemistry 33.20 (1994): 6201-6206.
[2]Hyatt, Doug, et al. "Prodigal: prokaryotic gene recognition and translation initiation site identification." BMC bioinformatics 11.1 (2010): 119.
[3]Ingolia, Nicholas T., et al. "The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments." Nature protocols 7.8 (2012): 1534-1550.
[4]Ingolia, Nicholas T., et al. "Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling." science 324.5924 (2009): 218-223.
[5]Silvera, Deborah, Silvia C. Formenti, and Robert J. Schneider. "Translational control in cancer." Nature Reviews Cancer 10.4 (2010): 254-266.
[6]Rau, Michael, et al. "A reevaluation of the cap-binding protein, eIF4E, as a rate-limiting factor for initiation of translation in reticulocyte lysate." Journal of Biological Chemistry 271.15 (1996): 8983-8990.
[7]Paz-Aviram, Tal, Avital Yahalom, and Daniel A. Chamovitz. "Arabidopsis eIF3e interacts with subunits of the ribosome, Cop9 signalosome and proteasome." Plant signaling & behavior 3.6 (2008): 409-411.
[8]Ingolia, Nicholas T. "Ribosome profiling: new views of translation, from single codons to genome scale." Nature Reviews Genetics 15.3 (2014): 205-213.
[9]Ingolia, Nicholas T., Liana F. Lareau, and Jonathan S. Weissman. "Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes." Cell 147.4 (2011): 789-802.
[10]Guttman, Mitchell, et al. "Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins." Cell 154.1 (2013): 240-251.
[11]Bazzini, Ariel A., Miler T. Lee, and Antonio J. Giraldez. "Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish." Science 336.6078 (2012): 233-237.
[12]Brar, Gloria A., et al. "High-resolution view of the yeast meiotic program revealed by ribosome profiling." science 335.6068 (2012): 552-557.
[13]Dunn, Joshua G., et al. "Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster." Elife 2 (2013): e01179.
[14]Michel, Audrey M., et al. "Observation of dually decoded regions of the human genome using ribosome profiling data." Genome research 22.11 (2012): 2219-2229.
[15]Cenik, Can, et al. "Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans." Genome research 25.11 (2015): 1610-1621.
[16]Crappé, Jeroen, et al. "PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration." Nucleic acids research 43.5 (2015): e29-e29.
[17]Eichhorn, Stephen W., et al. "mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues." Molecular cell 56.1 (2014): 104-115.
[18]Loayza-Puch, Fabricio, et al. "p53 induces transcriptional and translational programs to suppress cell proliferation and growth." Genome biology 14.4 (2013): R32.
[19]Fritsch, Claudia, et al. "Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting." Genome research 22.11 (2012): 2208-2218.
[20]Guo, Huili, et al. "Mammalian microRNAs predominantly act to decrease target mRNA levels." Nature 466.7308 (2010): 835-840.
[21]Guo, Junjie U., et al. "Expanded identification and characterization of mammalian circular RNAs." Genome biology 15.7 (2014): 409.
[22]Hsieh, Andrew C., et al. "The translational landscape of mTOR signalling steers cancer initiation and metastasis." Nature 485.7396 (2012): 55-61.
[23]Zhao, Boxuan Simen, et al. "m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition." Nature 542.7642 (2017): 475-478.
[24]Rooijers, Koos, et al. "Ribosome profiling reveals features of normal and disease-associated mitochondrial translation." Nature communications 4 (2013).
[25]Wolfe, Andrew L., et al. "RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer." Nature 513.7516 (2014): 65-70.
[26]Sidrauski, Carmela, et al. "The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly." Elife 4 (2015): e05033.
[27]Wang, Xiao, et al. "N 6-methyladenosine modulates messenger RNA translation efficiency." Cell 161.6 (2015): 1388-1399.
[28]Wiita, Arun P., et al. "Global cellular response to chemotherapy-induced apoptosis." Elife 2 (2013): e01236.
[29]Reid, David W., and Christopher V. Nicchitta. "Primary role for endoplasmic reticulum-bound ribosomes in cellular translation identified by ribosome profiling." Journal of Biological Chemistry 287.8 (2012): 5518-5527.
[30]Bock, Christoph, et al. "Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines." Cell 144.3 (2011): 439-452.
[31]Friedel, Caroline C. "Virus-Host Transcriptomics."
[32]Mosig, Axel, et al. "Invited presentations, junior research groups and research highlights at GCB 2015." PeerJ PrePrints 3 (2015): e1352v1.
[33]Gnatenko, Dmitri V., et al. "Transcript profiling of human platelets using microarray and serial analysis of gene expression." Blood 101.6 (2003): 2285-2293.
[34]Bercovich-Kinori, Adi, et al. "A systematic view on influenza induced host shutoff." eLife 5 (2016): e18311.
[35]Loke, P'ng, et al. "Gene expression patterns of dengue virus-infected children from nicaragua reveal a distinct signature of increased metabolism." PLoS Negl Trop Dis 4.6 (2010): e710.
[36]Galicia-Vázquez, Gabriela. Modulation of Translation Initiation by eIF4A. Diss. McGill University Montreal, Quebec, Canada, 2015.
[37]Zur, Hadas, Ranen Aviner, and Tamir Tuller. "Complementary Post Transcriptional Regulatory Information is Detected by PUNCH-P and Ribosome Profiling." Scientific reports 6 (2016).
[38]Shi, Hailing, et al. "YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA." Cell research (2017).
[39]Valentin-Vega, Yasmine A., et al. "Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation." Scientific reports 6 (2016).
[40]Park, Jong-Eun, et al. "Regulation of poly (A) tail and translation during the somatic cell cycle." Molecular cell 62.3 (2016): 462-471.
[41]Vasselli, James R., et al. "Predicting survival in patients with metastatic kidney cancer by gene-expression profiling in the primary tumor." Proceedings of the National Academy of Sciences 100.12 (2003): 6958-6963.
[42]Wang, Yuan Yuan, et al. "Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells." JCI insight 2.4 (2017).
[43]Loayza-Puch, Fabricio, et al. "Tumour-specific proline vulnerability uncovered by differential ribosome codon reading." Nature (2016).
[44]Xu, Baoshan, et al. "Improved transcription and translation with L-leucine stimulation of mTORC1 in Roberts syndrome." BMC genomics 17.1 (2016): 25.
[45]Raj, Anil, et al. "Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling." Elife 5 (2016): e13328.
[46]Ji, Zhe, et al. "Many lncRNAs, 5’UTRs, and pseudogenes are translated and some are likely to express functional proteins." Elife 4 (2015): e08890.
[47]Calviello, Lorenzo, et al. "A spectral analysis approach to detect actively translated open reading frames in high-resolution ribosome profiling data." bioRxiv (2015): 031625.
[48]Whitfield, James F., and Balu Chakravarthy. Calcium: The grand-master cell signaler. NRC Research Press, 2001.
[49]Tirosh, Osnat, et al. "The transcription and translation landscapes during human cytomegalovirus infection reveal novel host-pathogen interactions." PLoS pathogens 11.11 (2015): e1005288.
[50]Fan, Hung, and Sheldon Penman. "Regulation of protein synthesis in mammalian cells: II. Inhibition of protein synthesis at the level of initiation during mitosis." Journal of molecular biology 50.3 (1970): 655-670.
[51]Prescott, D. M., and M. A. Bender. "Synthesis of RNA and protein during mitosis in mammalian tissue culture cells." Experimental cell research 26.2 (1962): 260-268.
[52]Jang, Christopher, et al. "Ribosome profiling reveals an important role for translational control in circadian gene expression." Genome research 25.12 (2015): 1836-1847.
[53]Bock, Christoph, et al. "Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines." Cell 144.3 (2011): 439-452.
[54]Pattanayak, Vikram, et al. "High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity." Nature biotechnology 31.9 (2013): 839-843.
[55]Wein, Nicolas, et al. "A novel DMD IRES results in a functional N-truncated dystrophin, providing a potential route to therapy for patients with 5’mutations." Nature medicine 20.9 (2014): 992.
[56]Karolchik, Donna, et al. "The UCSC genome browser database." Nucleic acids research 31.1 (2003): 51-54.
[57]Michel, Audrey M., et al. "GWIPS‐viz as a tool for exploring ribosome profiling evidence supporting the synthesis of alternative proteoforms." Proteomics 15.14 (2015): 2410-2416.
[58]Xie, Shang-Qian, et al. "RPFdb: a database for genome wide information of translated mRNA generated from ribosome profiling." Nucleic acids research (2015): gkv972.
[59]Nicholson, R. I., J. M. W. Gee, and ME 2. Harper. "EGFR and cancer prognosis." European journal of cancer 37 (2001): 9-15.
[60]Paterson, James WE. "Brcal: A Review of Structure and Putative Functions." Disease markers 13.4 (1998): 261-274.
[61]Toyooka, Shinichi, et al. "Aberrant methylation of the CDH13 (H-cadherin) promoter region in colorectal cancers and adenomas." Cancer research 62.12 (2002): 3382-3386.
[62]Horne, Mary C., et al. "Cyclin G1 and cyclin G2 comprise a new family of cyclins with contrasting tissue-specific and cell cycle-regulated expression." Journal of Biological Chemistry 271.11 (1996): 6050-6061.