簡易檢索 / 詳目顯示

研究生: 葉尚祐
Ye, Shang-You
論文名稱: 以自我學習模糊類神經網路應用於健身車之開發
Development of Stationary Bike Using Self-learning Fuzzy Neural Network
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 60
中文關鍵詞: 模糊類神經網路線上自我學習互動式健身器材
外文關鍵詞: Fuzzy neural network, online self-learning, interactive exercise device
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來健身車的演進中,多以改良其機構或電氣元件為主,較少概念上的革新,因此,本文提出無機構連結之協力車健身系統,嘗試透過電氣耦合的方式,使無機械相互連結的兩部健身車達成協力車的運轉模式。本文藉由通訊介面連結兩部健身車,並根據健身車騎士的踩踏行為運算出真實協力車的踏板轉速,再透過踏板阻力的調變來控制健身車踏板轉速,使其與真實協力車一致。由於此系統具有許多不確定性,故本文採用具備自我學習能力的模糊類神經控制器進行踏板轉速控制,使控制器更適應此系統。
    此外,若以健身車作為體能訓練之器材,為達到有效且穩定的訓練效果,並且避免因過度訓練而造成運動傷害,必須對健身車騎士的踩踏轉矩進行控制,因此,本研究提出踩踏轉矩控制之訓練模式,藉由感測器量測騎士踩踏轉矩後,透過控制器調變踏板阻力以控制騎士踩踏轉矩,進而達成適當的訓練效果。

    In order to develop new application of stationary bikes, two innovative operation modes of stationary bikes are proposed in this thesis, which are tandem-bike-like exercise system and pedaling torque control system. For the tandem-bike-like exercise system, CAN bus is used for the electric coupling of two stationary bikes. In order to operate two separate stationary bikes together like real tandem bike, a tandem bike reference model and an online self-learning fuzzy neural network controller are introduced into the system to control the pedaling cadence (revolution speed). Regarding the pedaling torque control system, the pedaling torque of the rider is controlled to follow a given torque command. With the control of pedaling torque, the stationary bike can be used for training muscles in lower limbs. Besides, torque control can prevent the rider from injuries caused by excessive pedaling. In this system, the pedaling torque is detected and a controller is involved in the system to modulate the pedaling resistance so as to adjust the pedaling torque of the rider. According to the experimental results, the aforementioned system operates well as expected.

    摘要 I Extended Abstract II 誌謝 XII 目錄 XIII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 貢獻 3 1.3 本文大綱 3 第二章 健身車系統設計 5 2.1 無機構連結之協力車健身系統 5 2.1.1 系統架構 5 2.1.2 協力車參考模型 7 2.2 踩踏轉矩控制之訓練模式 16 第三章 動態模糊類神經控制器設計與分析 17 3.1 動態模糊類神經控制器架構 17 3.2 動態模糊類神經控制器參數學習演算法 20 3.3 穩定度分析 23 3.4 協力車健身系統模擬 27 3.4.1 系統模擬之規劃 27 3.4.2 單機運轉之模擬 29 3.4.3 協力車健身系統之模擬 35 第四章 軟硬體實作與實驗結果 39 4.1 硬體實作與軟體規劃 39 4.1.1 健身車 39 4.1.2 荷重元 39 4.1.3 編碼器以及周邊電路 40 4.1.4 磁阻元件驅動電路 41 4.1.5 軟體控制規劃 42 4.2 實驗結果 49 4.2.1 前言 49 4.2.2 單一健身車踏板轉速控制 49 4.2.3 協力車健身系統踏板轉速控制 52 4.2.4 踩踏轉矩控制之訓練模式 54 第五章 結論與未來研究方向 55 5.1. 結論 55 5.2. 未來研究方向 56 參考文獻 58

    [1] 教育部網站 即時新聞, 民國104年12月, Available: http://www.edu.tw/
    [2] 鄭勵君、楊東翰、陳宗男、呂宗霖、吳尚益, “國際運動健身產業發展趨勢之研究-以World Gym國際健身俱樂部為例”, 行政院體育委員會運動發展基金補助運動產業專題研究計畫報告書, 民國101年10月
    [3] Microchip Technology Inc., CAN202 Workshop
    [4] 周立功、嚴寒亮、黃曉清, “項目驅動──CAN bus現場總線基礎教程”, 北京航空航天大學出版社, 2012.7
    [5] F. J. Lin, Y. C. Hung, J. C. Hwang, and M.T. Tsai, “Fault-Tolerant Control of a Six-Phase Motor Drive System Using a Takagi–Sugeno–Kang Type Fuzzy Neural Network With Asymmetric Membership Function”, IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3557 - 3572, July 2013
    [6] Y. C. Hung, F. J. Lin, J. C. Hwang, J. K. Chang, and K. C. Ruan, “Wavelet Fuzzy Neural Network With Asymmetric Membership Function Controller for Electric Power Steering System via Improved Differential Evolution”, IEEE Trans. Power Electronics, vol. 30, no. 4, pp. 2350 - 2362, Apr. 2015
    [7] F. J. Lin and P. H. Shen, “Adaptive Fuzzy-Neural-Network Control for a DSP-Based Permanent Magnet Linear Synchronous Motor Servo Drive”, IEEE Trans. Fuzzy Systems, vol. 14, no. 4, pp. 481 - 495, Aug. 2006
    [8] M. Corno, P. Giani, M. Tanelli, and S. M. Savaresi, ”Human-in-the-Loop Bicycle Control via Active Heart Rate Regulation”, IEEE Trans. Control Systems Technology, vol. 23, no. 3, pp. 1029 - 1040, May 2015
    [9] 廖慶復、姜林靜惠 財團法人車輛研究測試中心(副工程師), “市售輪胎滾動阻力與濕地抓地力測試研究”, 中華民國第十七屆車輛工程學術研討會,南開科技大學機械工程系,台灣南投,2012 年11 月9 日
    [10] S. Suryanarayanan, M. Tomizuka and M. Weaver, “System Dynamics and Control of Bicycles at High Speeds”, Proceedings of the American Control Conference Anchorage, May 8-10, 2002
    [11] W. Bertuccia, F. Grappea , A.y Girarda , A. Betika, J. D. Rouillon, “Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling”, Journal of Biomechanics, Vol. 38, Issue 5, Pages 1003–1010, May 2005
    [12] 鄭竣升, “以線上系統參數估測法達成自動發電控制之適應性調整策略”, 國立成功大學電機工程學系碩士論文,民國97年7月
    [13] 黃茂庭, ”以模糊自調式技術實現永磁同步電動機之速度控制”, 國立成功大學電機工程學系碩士論文,民國97年7月
    [14] 朱毅傑, ”模糊控制器搭配RCE演算法於電力雙邊輔助服務之應用”, 國立成功大學電機工程學系碩士論文,民國94年7月
    [15] 楊英魁、孫宗瀛、鄭魁香、林建德、蔣旭堂, ”模糊控制理論與技術”, 全華科技圖書, 民國91年9月
    [16] 張斐章、張麗秋、黃浩倫, ”類神經網路理論與實務”, 東華書局, 民國92年
    [17] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998
    [18] C. T. Lin and C. S. G. Lee, "Neural-network-based fuzzy logic control and decision system", IEEE Trans. Computers, vol. 40, no. 12, pp. 1320-1336, Dec. 1991
    [19] C. F. Juang and C. T. Lin, "An online self-constructing neural fuzzy inference network and its applications," IEEE Trans. Fuzzy Systems, vol. 6, no. 1, pp. 12-32, Feb. 1998
    [20] H. Mohammadi-Abdar, A. L. Ridgel, F. D. Discenzo, K. A. Loparo, “Modeling and Simulation of Power Sharing and Interaction between Riders on a Tandem Bicycle”, 53rd IEEE Conference on Decision and Control, Dec. 15-17, 2014. Los Angeles, California, USA
    [21] 曾百由, “dsPIC數位訊號控制器原理與應用—MPLAB C30開發實務”, 宏友圖書開發股份有限公司, 2009.

    無法下載圖示 校內:2018-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE