簡易檢索 / 詳目顯示

研究生: 李柏毅
Lee, Bo-Yi
論文名稱: 絕緣閘極雙極性電晶體模擬實作與表面終端耐壓結構設計
Simulation and Fabrication of Insulated-Gate-Bipolar-Transistor with surface termination design
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 95
中文關鍵詞: 絕緣閘雙極性電晶體高功率元件表面結構設計
外文關鍵詞: IGBT, Power device, Surface termination structure
相關次數: 點閱:98下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 絕緣閘極雙極性電晶體(Insulated-Gate-Bipolar-Transistor),乃是因應功率元件在高頻應用上所開發出來的元件。它利用整合高功率雙極性電晶體 (Power Bipolar Transistor)以及高功率金氧半電晶體 (Power MOSFET)結構的方法,克服兩個功率元件在應用上的缺點,達到了中高功率、頻率上的有效應用。
    隨著半導體元件尺寸的縮小,功率元件的主動區特性會受到影響而降低,本文研究如何在不影響元件主動區特性的前提下,利用最佳化保護環(Guard-rings)設計來提升絕緣閘雙極性電晶體的崩潰電壓並利用元件模擬軟體來探討保護環與矽基板接面形成的空乏效應。
    在論文中,我們利用元件模擬軟體(Silvaco)輔助設計高耐壓大電流的絕緣閘極雙極性電晶體,並利用改變表面結構的設計來增強元件對耐壓的能力,不同於過去傳統的表面結構,我們提出新表面結構的崩潰電壓模擬約為1000V,在相同的製程條件下傳統的結構則為300V,且兩者擁有相同的主動特性。
    在不同濃度保護環的離子佈值條件中,我們發現當主動區(P-Body)到鄰近的一個保護環距離為21um時且保護環離子佈植的濃度在1X〖10〗^14時,會有崩潰電壓的最大值(1120V),最後我們利用改變主動區的離子佈植濃度和不同的光罩設計得知當主動區的面積大小下降2.3%時會使元件主動區特性降低10%。

    Insulation-Gate Bipolar Transistor(IGBT),which is developed for power devices using medium-power and medium-frequency. It integrates the structures of Power Bipolar Transistor and Power MOSFET, and has better performance in many applications.
    With the dimension of semiconductors scaling down, achieving a desired active performance becomes a challenge. The aim of this study is to keep the device active performance and improve the breakdown voltage by optimizing the Guard-ring.
    In this paper, we use T-CAD simulation software (Silvaco) to achieve an Insulated Gate Bipolar Transistor (IGBT) design with high breakdown voltage and current. We change the surface structure to enhance the breakdown voltage. Under the same implant and annealing parameters, these two structures have the same forward characteristic, while the new structure breakdown voltage (1000V) is three times higher than the conventional structure (300V).
    If the guard-ring implant parameters are altered, the highest breakdown voltage (1120V) can be achieved with a 〖1X10〗^14 ions/cm^2 implant concentration for the Guard-rings. The distance between the first Guard-ring and the main junction (P-body) is found to be 21um. Finally, we change the P-body implant concentration and layout and found that when the cell region is decreased by 2.3%, the active performance will be reduced by 10%.

    Contents 摘要 I Abstract II 誌謝 III Contents IV Table Captions VIII Figure Captions IX Chapter 1 Introduction 1 1-1 Power Device Over view 1 1-2 Motivation 3 Chapter 2 IGBT Technology Develop Procedure 4 2-1 Technological Development Overview 4 2-2 IGBT Surface Structure Develop 5 2-2-1 Planar IGBT 5 2-2-2 Trench IGBT 6 2-3 IGBT Bottom Structure Develop 7 2-3-1 Punch-Through IGBT(PT-IGBT) 7 2-3-2 Non-Punch-Through IGBT(NPT-IGBT) 8 2-3-3 Field-Stop IGBT(FS-IGBT) 10 2-4 Development of IGBT Related Technology 12 2-4-1Injection Enhanced IGBT(IEGT) 12 2-5 Edge Termination Structure 14 Chapter 3 IGBT Device Operational Modes And Latch-up 17 3-1 Device Operational Modes 17 3-2-1 Reverse-Blocking Mode 17 3-2-2 Forward-Blocking and Conduction Modes 18 3-3 Static Switching Behavior of IGBT 20 3-3-1 Turn-On State 20 3-3-2 Turn-off Stage 21 3-4 IGBT Breakdown Phenomenon 22 3-4-1Avalanche Breakdown 22 3-4-2Punch Through Breakdown 22 3-5 IGBT Latch-up 23 3-5-1 Static Latch-up Mode 23 3-5-2 Dynamic Latch-up Mode 23 3-5-3 Latching prevention methods 24 Chapter 4 Experiment Scheme 4-1 Power Device IGBT characteristic enhancement 25 4-2 Experimental procedure 26 4-3 Factors of P-body concentration on Vth(Threshold voltage)27 4-4 Factors of P-body concentration on Vce(On-State voltage)31 4-5 Facotrs of Guard-rings concentration on Breakdown voltage 34 4-6 New design concepts of Guard-rings 38 4-7 Layout design and Device fabrication 40 Chapter 5 Results and Discussion 50 5-1-1 Effects of P-body concentration on the Vth of IGBT 50 5-1-2 Effects of P-body concentration on the Von of IGBT 60 5-2-1 Effects of Guard-rings structure on the simulation 69 5-2-2 Effects of Guard-rings structure on the measurement 75 5-2-3 IGBT Breakdown voltage discussion 83 Chapter 6 Conclusion 91 Reference 92 Table Captions Table 2-1 IGBT Generation Developed.[1] 4 Table 2-2 Comparison of the different IGBT concepts.[3] 10 Table 2-3 Different type IGBT structure and characteristic.[3] 11 Table 4-1 Structural parameters for the different Voltage-Rating FLR Designs.[8] 39 Table 4-2 IGBT Layout conditions 43 Table 4-3 Process flow 44 Table 4-4 Edge termination region(left side) and Cell region(right side) 45 Table 5-1 Threshold voltage simulation 52 Table 5-2 Threshold voltage measurement 54 Table 5-3 Different Layout VS Threshold voltage 56 Table 5-4 Threshold voltage Simulation VS Fabrication 58 Table 5-5 On-state voltage simulation 61 Table 5-6 IGBT On-state voltage measurement 63 Table 5-7 Different P-body concentration VS On-sate voltage 65 Table 5-8 The ratio of GR and Cell region 67 Table 5-9 On-State Voltage Simulation & Fabrication 68 Table 5-10 Spacing =15um Breakdown Voltage simulation 69 Table 5-11Spacing=21um Breakdown Voltage simulation 70 Table 5-12Spacing=31um Breakdown Voltage simulation 70 Table 5-13Spacing=31um Breakdown Voltage simulation 70 Table 5-14 Simulation VBD Curve 71 Table 5-15 Simulation Breakdown Voltage trend 73 Table 5-16 IGBT Breakdown voltage measurement 75 Table 5-17 Different Layout and IMPL concentration 77 Table 5-18 Different layout patterns for different GR IMPL 79 Table 5-19 The number of Guard-rings 81 Table 5-20 Simulation VS Experimental 83 Table 5-21 Different Spacing VS Breakdown voltage 85 Figure Captions Fig 2-1 Cross-section view of the IGBT unit cell 5 Fig2-2 Trench IGBT Structure 6 Fig2-3 PT-IGBT structure 7 Fig2-4 Representative impurity diffusion profile of PT-IGBT 8 Fig2-5 NPT-IGBT structure 9 Fig2-6 Representative impurity diffusion profile of NPT-IGBT 9 Fig2-7 Examples of non-IE and IE structure 12 Fig2-8 Calculated carrier distribution in n-base for different p-base contact ratios 13 Fig2-9 Calculated I-V characteristics for different p-base contact ratios 13 Fig 2-10 Electric field lines(a)shallow and (b)deep planar diffused junctions 14 Fig 2-11 Top vies of diffusion window 15 Fig2-12 Cross-section of edge termination with a single floating field rin 16 Fig3-1 Cross-section of Reverse Blocking Mode 17 Fig 3-2 Cross-section of Forward Blocking 18 Fig 3-3 Spreading of the depletion layer in the central and peripheral regions of an IGBT 18 Fig 3-4 Cross-section of conduction Mode 19 Fig 3-5 Equivalent Circuit for the IGBT & a Cross Section of the IGBT Structure 20 Fig 3-6 Avalanche Breakdown 22 Fig 3-7 Deep P+ body 23 Fig 3-8 Minority Carrier By-pass IGBT 24 Fig4-1 IGBT Top View 25 Fig4-2 MOS gate voltage band gap 27 Fig4-3 The threshold inversion point charge space distribution 29 Fig 4-4 Apply positive voltage on gate 29 Fig 4-5 Schematic diagram of IGBT as a combination of PIN and MOSFET 31 Fig4-6 PN Junction and Depletion Region 34 Fig4-7 Abrupt PN Junction depletion region 35 Fig4-8 Spacing between the main junction and ring d(um)[8] 39 Fig4-9 Conventional Guard-Ring Structure 40 Fig4-10 Propose Guard-Ring Structure 40 Fig 4-11 Edge termination cross-section 41 Fig 4-12 Conventional structure V.S Proposed structure 41 Fig 4-13 Spacing between Main junction to First Ring 42 Fig 4-14 Trench-non-punch-through IGBT 43 Fig 4-15 One cell structure 44 Fig 5-1 IGBT cell region 50 Fig 5-2 Simplified schematic 51 Fig 5-3 Cell region Cross-section 51 Fig 5-4 Threshold Voltage I-V Curve 52 Fig 5-5 Different P-body concentration Structure 53 Fig 5-6 Different P-body concentration Current flowlines 53 Fig 5 -7-1 Threshold voltage Simulation VS Fabrication 58 Fig 5 -7-2 Different P-body concentration VS Threshold voltage 59 Fig5-8 IGBT cell region 60 Fig 5-9 Simplified schematic 60 Fig 5-10 Cell region Cross-section 61 Fig 5-11 On-state Voltage with different P-body concentration 62 Fig 5-12 Ratio of On-state 67 Fig 5-13 Edge termination structure(New structure) 69 Fig 5-14 Depletion region and Ionization 84 Fig 5-15 VBD V.S Different GR IMPL 84 Fig 5-16 High concentration High electric field 85 Fig 5-17 Breakdown voltage Peak value 86 Fig 5-18 Schematic diagram 86 Fig 5-19 Breakdown Voltage 6GR VS 5GR 87 Fig 5-20 5GR depletion region 88 Fig 5-21 6GR depletion region 88 Fig 5-22 Electric field distribution 89 Fig 5-23 GR potential voltage 90

    [1] 朱英文,第一代到第六代IGBT设计和制造技术的发展概况 (2012)
    [2] Vinod Kumar Khanna, The Insulated Gate Bipolar Transistor Theory and Design(2003)
    [3] T. Laska’, M. Miinzer’, F. Pfirsch’, C. Schaeffer3, T. Schmidt4, The Field Stop IGBT (FS IGBT) –A New Power Device Concept with a Great Improvement Potential(2000)
    [4] I‘.Takeda, M.Kuwahara, S.Kamata, T.Tsunoda, K.Imamura and S.Nakao, 1200V Trench Gate NPT-IGBT(IEGT) with Excellent Low On-State Voltage.(1998)
    [5] B.Jayant Boliga,Fundamentals of Power Semiconductor Devices(2008).
    [6] K.S. Oh, FAIRCHILD SEMICONDUCTOR Application Note 9016(2001).
    [7] Donald A.Neamen, Fundamentals of Semiconductor Physics and Devices(2003).
    [8] Xu Cheng, Member IEEE, Johnny K. O. Sin, Senior Member, IEEE, John Shen, Student Member, IEEE, Yong-jin Huai, Rui-zhen Li, Yu Wu, Memberm, IEEE, and Bao-wei Kang, Senior Member, IEEE, A General Design Methodology for the Optimal Multiple-Field-Limiting-Ring Structure Using Device Simulator(2003).
    [9] K. P. Brieger, W. Gerlach, and J. Pelka, “Blocking capability of planar devices with field limiting rings,” Solid-State Electron., vol. 26, no. 8, pp. 739–745, (1983)
    [10] M. S. Adler, V. A. K. Temple, A. P. Ferro, and R. C. Rustay, “Theory and breakdown voltage for planar devices with a single field limiting ring,”IEEE Trans. Electron Devices, vol. ED-24, pp. 107–113, (Feb. 1977)
    [11] K. R. Whight and D. J. Coe, “Numerical analysis of multiple field limiting ring systems,” Solid-State Electron., vol. 27, no. 11, pp.1021–1027, (1984)
    [12] K.-D. Suh, S.-W. Hong, K. Lee, and C.-K. Kim, “An analysis for the potential of floating guard rings,” Solid-State Electron., vol. 33, no. 9,pp. 1125–1129, (1990)
    [13] F. Conti and M. Conti, “Surface breakdown in silicon planar diodes equipped with field plate,” Solid-State Electron., vol. 15, pp. 93–105, (1972)
    [14] T. Matsushita, T. Aoki, T. Ohtsu, H. Yamoto, H. Hayashi, M. Okayama, and Y. Kawana, “Highly reliable high-voltage transistors by use of the SIPOS process,” IEEE Trans. Electron Devices, vol. ED-23, pp. 826–830,(Aug. 1976)
    [15] V. A. K. Temple, “Junction Termination Extension (JTE), a new technique for increasing avalanche breakdown voltage and controlling surface electric fields in P-N junctions,” in IEDM Tech. Dig., pp. 423–426.(1977)
    [16] J. A. Appels, M. G. Collet, P. A. H. Hart, H. M. J. Vaes, and J. F. C. M. Verhoeven, “Thin layer high-voltage devices (RESURF devices),” Philips J. Res., vol. 35, no. 1, pp. 1–13. (1980)
    [17] R. Stengl, U. Gosele, C. Fellinger,M. Beyer, and S.Walesch, “Variation of lateral doping as a field terminator for high-voltage power devices,” IEEE Trans. Electron Devices, vol. ED-33, pp. 426–428. (Mar. 1986)
    [18] D. Jaume, G. Charitat, J. M. Reynes, and P. Rossel, “High-voltage planar devices using field plate and semi-resistive layers”, IEEE Trans. Electron Devices, vol. 38, no. 7, pp. 1681-1684. (July 1991)
    [19] R. Stengl, U. Gosele, C. Fellinger, M. Beyer, and S. Walesch, “Variation of lateral doping as a field terminator for high-voltage power devices”, IEEE Trans. Electron Devices, vol. 33, no. 3, pp.426-428. (Mar. 1986)
    [20] J. He, M. Chan, X. Zhang, and Y.Y. Wang, “A new analytic method to design multiple floating field limiting rings of power devices”, Solid-State Electronics, vol. 50, pp. 1375-1381. (2006)
    [21] Y. H. Kim, H. S. Lee, S. S. Kyung, Y. M. Kim, E. G. Kang, and M. Y. Sung, “A new edge termination technique to improve voltage blocking capability and reliability of field limiting ring for power devices”, Proc.IEEE Int. Conf. on Integrated Circuit Design and Technology and Tutorial, pp. 71-74. (June 2008)
    [22] R. L. Davies and F. E. Gentry, “Control of electric field at the surface of P-N junctions,” IEEE Trans. Electron Devices, vol. ED-11, pp. 313–323. (1964)
    [23] Y. C. Kao and E. D. Wolley, “High-voltage planar p-n junctions,” Proc. IEEE, vol. 55, pp. 1409–1414. (Aug. 1967)
    [24] E. Stefanov, G. Charitat, and L. Bailon, “Design methodology and simulation tool for floating ring termination technique,” Solid-State Electron., vol. 42, no. 12, pp. 2251–2257. (1998)
    [25] V. A. K. Temple and W. Tantrapron, “Junction termination extension for near-ideal breakdown voltage in p-n junction”, IEEE Trans Electron Devices, vol. ED-33, no. 10, pp. 1601-1608. (1986)
    [26] J. He, R. Huang, X. Zhang, Y. Y. Wang, and X. B. Chen, “Analytical model of three-dimensional effect on voltage and edge peak field distributions and optimal space for planar junction with a single field limiting ring, Solid-State Electronics, vol. 45, pp. 79-85. (2001)
    [27] B. J. Baliga, “Closed-form analytical solutions for the breakdown voltage of planar junctions terminated with a single floating field ring,” Solid-State Electron., vol. 33, no. 5, pp. 485–488. (1990)
    [28] J. He, X. Zhang, R. Huang, and Y. Y.Wang, “A new quasi 2-dimensional analytical approach to predicting ring junction voltage, edge peak fields and optimal spacing of planar junction with single floating field limiting ring structure,” Chin. J. Semicond., vol. 22, no. 6, pp. 700–705. (2001)
    [29] V. Boisson, M. L. Helley, and J. P. Chante, “Analytical expression for the potential of guard rings of diodes operating in the punchthrough mode,” IEEE Trans. Electron Devices, vol. ED-32, pp. 838–840. (Apr. 1985)
    [30] X. Cheng, J. K. O. Sin, J. Shen, Y. J. Huai, R. Z. Li, Y. Wu, and B. W. Kang, “A general design methodology for the optimal multiple-field limiting-ring structure using device simulator”, IEEE Trans. Electron Devices, vol. 50, no. 10. (Oct. 2003)

    下載圖示 校內:2019-08-08公開
    校外:2019-08-08公開
    QR CODE