| 研究生: |
李柏毅 Lee, Bo-Yi |
|---|---|
| 論文名稱: |
絕緣閘極雙極性電晶體模擬實作與表面終端耐壓結構設計 Simulation and Fabrication of Insulated-Gate-Bipolar-Transistor with surface termination design |
| 指導教授: |
李文熙
Lee, Wen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 絕緣閘雙極性電晶體 、高功率元件 、表面結構設計 |
| 外文關鍵詞: | IGBT, Power device, Surface termination structure |
| 相關次數: | 點閱:98 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
絕緣閘極雙極性電晶體(Insulated-Gate-Bipolar-Transistor),乃是因應功率元件在高頻應用上所開發出來的元件。它利用整合高功率雙極性電晶體 (Power Bipolar Transistor)以及高功率金氧半電晶體 (Power MOSFET)結構的方法,克服兩個功率元件在應用上的缺點,達到了中高功率、頻率上的有效應用。
隨著半導體元件尺寸的縮小,功率元件的主動區特性會受到影響而降低,本文研究如何在不影響元件主動區特性的前提下,利用最佳化保護環(Guard-rings)設計來提升絕緣閘雙極性電晶體的崩潰電壓並利用元件模擬軟體來探討保護環與矽基板接面形成的空乏效應。
在論文中,我們利用元件模擬軟體(Silvaco)輔助設計高耐壓大電流的絕緣閘極雙極性電晶體,並利用改變表面結構的設計來增強元件對耐壓的能力,不同於過去傳統的表面結構,我們提出新表面結構的崩潰電壓模擬約為1000V,在相同的製程條件下傳統的結構則為300V,且兩者擁有相同的主動特性。
在不同濃度保護環的離子佈值條件中,我們發現當主動區(P-Body)到鄰近的一個保護環距離為21um時且保護環離子佈植的濃度在1X〖10〗^14時,會有崩潰電壓的最大值(1120V),最後我們利用改變主動區的離子佈植濃度和不同的光罩設計得知當主動區的面積大小下降2.3%時會使元件主動區特性降低10%。
Insulation-Gate Bipolar Transistor(IGBT),which is developed for power devices using medium-power and medium-frequency. It integrates the structures of Power Bipolar Transistor and Power MOSFET, and has better performance in many applications.
With the dimension of semiconductors scaling down, achieving a desired active performance becomes a challenge. The aim of this study is to keep the device active performance and improve the breakdown voltage by optimizing the Guard-ring.
In this paper, we use T-CAD simulation software (Silvaco) to achieve an Insulated Gate Bipolar Transistor (IGBT) design with high breakdown voltage and current. We change the surface structure to enhance the breakdown voltage. Under the same implant and annealing parameters, these two structures have the same forward characteristic, while the new structure breakdown voltage (1000V) is three times higher than the conventional structure (300V).
If the guard-ring implant parameters are altered, the highest breakdown voltage (1120V) can be achieved with a 〖1X10〗^14 ions/cm^2 implant concentration for the Guard-rings. The distance between the first Guard-ring and the main junction (P-body) is found to be 21um. Finally, we change the P-body implant concentration and layout and found that when the cell region is decreased by 2.3%, the active performance will be reduced by 10%.
[1] 朱英文,第一代到第六代IGBT设计和制造技术的发展概况 (2012)
[2] Vinod Kumar Khanna, The Insulated Gate Bipolar Transistor Theory and Design(2003)
[3] T. Laska’, M. Miinzer’, F. Pfirsch’, C. Schaeffer3, T. Schmidt4, The Field Stop IGBT (FS IGBT) –A New Power Device Concept with a Great Improvement Potential(2000)
[4] I‘.Takeda, M.Kuwahara, S.Kamata, T.Tsunoda, K.Imamura and S.Nakao, 1200V Trench Gate NPT-IGBT(IEGT) with Excellent Low On-State Voltage.(1998)
[5] B.Jayant Boliga,Fundamentals of Power Semiconductor Devices(2008).
[6] K.S. Oh, FAIRCHILD SEMICONDUCTOR Application Note 9016(2001).
[7] Donald A.Neamen, Fundamentals of Semiconductor Physics and Devices(2003).
[8] Xu Cheng, Member IEEE, Johnny K. O. Sin, Senior Member, IEEE, John Shen, Student Member, IEEE, Yong-jin Huai, Rui-zhen Li, Yu Wu, Memberm, IEEE, and Bao-wei Kang, Senior Member, IEEE, A General Design Methodology for the Optimal Multiple-Field-Limiting-Ring Structure Using Device Simulator(2003).
[9] K. P. Brieger, W. Gerlach, and J. Pelka, “Blocking capability of planar devices with field limiting rings,” Solid-State Electron., vol. 26, no. 8, pp. 739–745, (1983)
[10] M. S. Adler, V. A. K. Temple, A. P. Ferro, and R. C. Rustay, “Theory and breakdown voltage for planar devices with a single field limiting ring,”IEEE Trans. Electron Devices, vol. ED-24, pp. 107–113, (Feb. 1977)
[11] K. R. Whight and D. J. Coe, “Numerical analysis of multiple field limiting ring systems,” Solid-State Electron., vol. 27, no. 11, pp.1021–1027, (1984)
[12] K.-D. Suh, S.-W. Hong, K. Lee, and C.-K. Kim, “An analysis for the potential of floating guard rings,” Solid-State Electron., vol. 33, no. 9,pp. 1125–1129, (1990)
[13] F. Conti and M. Conti, “Surface breakdown in silicon planar diodes equipped with field plate,” Solid-State Electron., vol. 15, pp. 93–105, (1972)
[14] T. Matsushita, T. Aoki, T. Ohtsu, H. Yamoto, H. Hayashi, M. Okayama, and Y. Kawana, “Highly reliable high-voltage transistors by use of the SIPOS process,” IEEE Trans. Electron Devices, vol. ED-23, pp. 826–830,(Aug. 1976)
[15] V. A. K. Temple, “Junction Termination Extension (JTE), a new technique for increasing avalanche breakdown voltage and controlling surface electric fields in P-N junctions,” in IEDM Tech. Dig., pp. 423–426.(1977)
[16] J. A. Appels, M. G. Collet, P. A. H. Hart, H. M. J. Vaes, and J. F. C. M. Verhoeven, “Thin layer high-voltage devices (RESURF devices),” Philips J. Res., vol. 35, no. 1, pp. 1–13. (1980)
[17] R. Stengl, U. Gosele, C. Fellinger,M. Beyer, and S.Walesch, “Variation of lateral doping as a field terminator for high-voltage power devices,” IEEE Trans. Electron Devices, vol. ED-33, pp. 426–428. (Mar. 1986)
[18] D. Jaume, G. Charitat, J. M. Reynes, and P. Rossel, “High-voltage planar devices using field plate and semi-resistive layers”, IEEE Trans. Electron Devices, vol. 38, no. 7, pp. 1681-1684. (July 1991)
[19] R. Stengl, U. Gosele, C. Fellinger, M. Beyer, and S. Walesch, “Variation of lateral doping as a field terminator for high-voltage power devices”, IEEE Trans. Electron Devices, vol. 33, no. 3, pp.426-428. (Mar. 1986)
[20] J. He, M. Chan, X. Zhang, and Y.Y. Wang, “A new analytic method to design multiple floating field limiting rings of power devices”, Solid-State Electronics, vol. 50, pp. 1375-1381. (2006)
[21] Y. H. Kim, H. S. Lee, S. S. Kyung, Y. M. Kim, E. G. Kang, and M. Y. Sung, “A new edge termination technique to improve voltage blocking capability and reliability of field limiting ring for power devices”, Proc.IEEE Int. Conf. on Integrated Circuit Design and Technology and Tutorial, pp. 71-74. (June 2008)
[22] R. L. Davies and F. E. Gentry, “Control of electric field at the surface of P-N junctions,” IEEE Trans. Electron Devices, vol. ED-11, pp. 313–323. (1964)
[23] Y. C. Kao and E. D. Wolley, “High-voltage planar p-n junctions,” Proc. IEEE, vol. 55, pp. 1409–1414. (Aug. 1967)
[24] E. Stefanov, G. Charitat, and L. Bailon, “Design methodology and simulation tool for floating ring termination technique,” Solid-State Electron., vol. 42, no. 12, pp. 2251–2257. (1998)
[25] V. A. K. Temple and W. Tantrapron, “Junction termination extension for near-ideal breakdown voltage in p-n junction”, IEEE Trans Electron Devices, vol. ED-33, no. 10, pp. 1601-1608. (1986)
[26] J. He, R. Huang, X. Zhang, Y. Y. Wang, and X. B. Chen, “Analytical model of three-dimensional effect on voltage and edge peak field distributions and optimal space for planar junction with a single field limiting ring, Solid-State Electronics, vol. 45, pp. 79-85. (2001)
[27] B. J. Baliga, “Closed-form analytical solutions for the breakdown voltage of planar junctions terminated with a single floating field ring,” Solid-State Electron., vol. 33, no. 5, pp. 485–488. (1990)
[28] J. He, X. Zhang, R. Huang, and Y. Y.Wang, “A new quasi 2-dimensional analytical approach to predicting ring junction voltage, edge peak fields and optimal spacing of planar junction with single floating field limiting ring structure,” Chin. J. Semicond., vol. 22, no. 6, pp. 700–705. (2001)
[29] V. Boisson, M. L. Helley, and J. P. Chante, “Analytical expression for the potential of guard rings of diodes operating in the punchthrough mode,” IEEE Trans. Electron Devices, vol. ED-32, pp. 838–840. (Apr. 1985)
[30] X. Cheng, J. K. O. Sin, J. Shen, Y. J. Huai, R. Z. Li, Y. Wu, and B. W. Kang, “A general design methodology for the optimal multiple-field limiting-ring structure using device simulator”, IEEE Trans. Electron Devices, vol. 50, no. 10. (Oct. 2003)