| 研究生: |
林慶鈞 Lin, Chin-Chun |
|---|---|
| 論文名稱: |
適用於調頻廣播之前端接收電路 A CMOS FM Broadcast Receiver Front-End IC |
| 指導教授: |
郭泰豪
Kuo, Tai-Haur |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 互補金氧半導體 、調頻 、接收機 、廣波 |
| 外文關鍵詞: | broadcast, CMOS, FM, receiver |
| 相關次數: | 點閱:149 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文描述一個應用於調頻廣播系統,接收頻率在88~108 MHz之間的單一互補金氧半導體接收器晶片。為了實現單一積體化,我們採用了Low-IF的接收機架構以降低類似晶片外映像拒斥濾波器(off-chip image-reject filter)的使用,且在此同時,也可以避免類似直接降頻接收器所導致的直流偏差(DC-offset)和自我混波(self-mixing)問題。此互補金氧半導體調頻廣播接收器前端電路採用quadrature low-IF的架構,主要包含:首先是雙端輸入低雜訊放大器;接著的是Hartley架構的映像拒斥混波電路,其中有 I/Q主動式移頻混波器、二階低通濾波器、相位延遲器;最後是切換電容式的十階帶通濾波器。在這裡,接收的前端電路,可以使得高頻的輸入訊號,降頻至中頻頻率在225 kHz的同相位以及相位差90的中頻訊號。透過映像拒斥混波電路提高在映像拒斥的能力。
本接收器電路是採用0.18微米單多晶層六金屬層之混合訊號製程來設計,結果顯示當高頻的輸入訊號操作頻率在88~108 MHz之間,訊號的頻寬為200kHz,最大訊號對雜訊和失真比(PSNDR)為44.3 dB,最大訊號對雜訊比(PSNR)為45.3 dB,動態範圍(dynamic range)為70dB。當工作電壓操作在1.8伏特時,此接收電路的消耗功率為63毫瓦,晶片總面積為0.93mm1mm其中不含Pads之面積為0.57mm0.62mm。
This thesis describes a single-chip CMOS receiver for FM Stereo Radio system working in the 88~108-MHz range. Low-power single-cell fully-featured radio receivers, with a minimum of external components are hard to find. For a monolithic implementation, the use of the Low-IF architecture alleviates the necessity of off-chip components, used for image-reject passive filtering. At the same time, DC-offset and self-mixing problems arising from direction-conversion architecture are avoided. This CMOS FM receiver frond-end is a quadrature low-IF receiver consisting of a differential-ended low noise amplifier (LNA) connected to Hartley image-rejection mixer, which comprises Inphase/Quadrature interference mixers, second-order filters, and phase shifter, followed by tenth-order switched-capacitor bandpass filter. The frond-end converts the RF signal to differential I and Q signals, centered at 225-kHz. Degrading of image interference characteristic can be avoided by I/Q IF mixers and phase shift network.
The receiver fabricated in a 0.18μm 1P6M mixed-signal CMOS mixed-mode process, achieve peak SNDR of 44.3 dB, peak SNR of 45.3 dB and dynamic range of 70dB with signal frequency of 88~108 MHz and signal bandwidth of 200 kHz. The combination draws 63 mW from a 1.8-V supply. The total chip area including bonding pads is 0.93mm1mm where the active area is 0.57mm0.62mm.
[1] Kave Kianush, and Sjakko Sandee, “ Integrated Adaptive Channel Selectivity for FM Receivers,” IEEE International Solid-State Circuits Conference, pp. 388-389, 2000.
[2] Taiwa Okanobu, and Toshiaki Tsuchiya, “ A Complete Single Chip AM/FM Radio Integrated Circuit,” IEEE Trans. Consumer Electron. vol. CE-28, pp. 393–408, Aug. 1982.
[3] Taiwa Okanobu, Hitoshi Tomiyama, and Hiroshi Arimoto, “ Advanced Low Voltage Single Chip Radio IC,” IEEE Trans. Consumer Electron. vol. 38, pp. 465–475, Aug. 1992.
[4] Daisuke Yamazaki, Chikara Nishi, and Taiwa Okanobu, “ A Complete Single Chip AM Stereo/FM Stereo Radio IC,” IEEE Trans. Consumer Electron. vol. 40, pp. 563-569, Aug. 1994.
[5] Taiwa Okanobu, and Hitoshi Tomiyama, “ An Advanced Low Power Radio 1 Chip IC,” IEEE Trans. Consumer Electron. vol. 40, pp. 842-851, Aug. 1994.
[6] Lothar Vogt, Dan Brookshire, Stefan Lottholz, and Guenther Zwiehoff “ A Two-Chip Digital Car Radio,” IEEE International Solid-State Circuits Conference, pp. 350-351, 1996.
[7] Kave Kianush, “ A Complete AM/FM Stereo Receiver and Tuning System on a Single Chip,” IEEE International Solid-State Circuits Conference, pp. 256-257, 1996.
[8] Matthijs Pardoen, John Gerrits, Vincent von Kaenel, “ A 0.9V 1.2mA 200MHz BiCMOS Single-Chip Narrow-Band FM Receiver,” IEEE International Solid-State Circuits Conference, pp. 348-349, 1996.
[9] Taiwa Okanobu, Hitoshi Tomiyama, and Yukinobu Kawamura, “ An AM/TV/FM Stereo Radio IC Including IF Filters for a DTS,” IEEE Trans. Consumer Electron. vol. 43, pp. 655-661, Aug. 1997.
[10] K. Kianush, C. Vaucher, “ A Global Car Radio IC with inaudible Signal Quality Checks,” IEEE International Solid-State Circuits Conference, pp. 130-131, 1998.
[11] Hans Brekelmans, “ A Novel Multistandard TV/FM Front-End for Multimedia Applications,” IEEE Trans. Consumer Electron. vol. 44, pp. 280-288, Aug. 1998.
[12] B-S. Song, and Jeffrey R. Barner, “ A CMOS Double-Heterodyne FM Receiver,” IEEE J. Solid-State Circuits, vol. SC-21, pp. 916-923, Dec. 1986.
[13] B-S. Song, “ A Narrow-Band CMOS FM Receiver Based on Single-Sideband Modulation IF Filtering,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 1147-1154, Dec. 1987.
[14] A. A. Abidi, “ Radio-Frequency Integrated Circuits for Portable Communications,” IEEE Custom Integrated Circuits Conference, pp. 8.1.1-8.1.8, 1994.
[15] “AN192, A Complete FM Radio on a Chip,” Philips Semiconductors, Data Sheet.
[16] “TDA700, FM Radio circuit,” Philips Semiconductors, Data Sheet.
[17] “TDA5768HL, Low-power FM stereo radio for handheld applications,” Philips Semiconductors, Data Sheet.
[18] G. A. De Veirman, and R. G. Yamasaki, “Design of a bipolar 10-MHz programmable continuous-time 0.05° equiripple linear phase filter,” IEEE J. Solid State Circuits, vol. 27, pp. 324-331, Mar. 1992.
[19] T. C. Choi, R. T. Kaneshiro, R. W. Brodersen, P. R. Gray, W. B. Jett, and M. Wilcox, “High-Frequency CMOS Switched-Capacitor Filters for Communications Application,” IEEE J. of Solid-State Circuits, vol. SC-18,
pp. 652-663, Dec. 1983.
[20] P. J. Quinn, K. van Hartingsveldt, and Arthur H. M. van Roermund, “A 10.7-MHz CMOS SC Radio IF Filter Using Orthogonal Hardware Modulation,” IEEE J. of Solid-State Circuits, vol. 35, pp. 1865-1876, Dec. 2000.
[21] A. Nagari, and G. Nicollini, “A 3 V 10 MHz Pseudo-Differential SC Bandpass Filter Using Gain Enhancement Replica Amplifier,” IEEE J. of Solid-State Circuits, vol. 33, pp. 626-630, Apr. 1998.
[22] A. Nagari, A. Baschirotto, F. Montecchi, and R. Castello, “ A 10.7-MHz BiCMOS High-Q Double-Sampled SC Bandpass Filter,” IEEE J. of Solid-State Circuits, vol. 32, pp. 1491-1498, Oct. 1997.
[23] G. Nicollini, F. Moretti, and M.Conti, “ High-frequency fully differential filter using operational amplifiers without common-mode feedback,” IEEE J. of Solid-State Circuits, vol. 24, pp. 808-813, Jun. 1989.
[24] B-S. Song, “ A10.7-MHz Switched-Capacitor Bandpass Filter,” IEEE J. of Solid-State Circuits, vol. 24, pp. 320-324, Apr. 1989.
[25] B-S. Song, and P. R. Gray, “ Switched-Capacitor High-Q Bandpass Filters,” IEEE J. of Solid-State Circuits, vol. SC-21, pp. 924-933, Dec. 1986.
[26] Y. P. Tsividis, “ Integrated continuous-time filter design - an overview,” IEEE J. of Solid-State Circuits, vol. 29, pp. 166-176, Mar. 1994.
[27] J. Silva-Martinez, M. S. J. Steyaert, W. Sansen, “ A10.7-MHz 68-dB SNR CMOS Continuous-Time Filter with On-Chip Automatic Tuning.” IEEE J. of Solid-State Circuits, vol. 27, pp. 1843-1853, Mar. 1992.
[28] Yun-Ti Wang, F. Lu, A. A. Abidi, “ A 12.5MHz Continuous Time Bandpass Filter,” IEEE International Solid-State Circuits Conference, pp. 198-199, 1989.
[29] C.-F. Chiou, R. Schaumann, “Design and performance of a fully integrated bipolar 10.7-MHz analog bandpass filter,” IEEE J. of Solid-State Circuits, vol. SC-21, pp. 6-14, Mar. 1986.
[30] F. Krummenacher, and G. V. Ruymbeke, “ Integrated Selectivity for Narrow-Band FM IF Systems," IEEE J. Solid-State Circuits, pp. 757-760, Jun. 1990.
[31] L-J Pu, and Y. P. Tsividis, “ Transistor-Only Frequency-Selective Circuits," IEEE Journal of Solid-State Circuits, vol. SC-25, pp. 821-832, Jun. 1990.
[32] T. Adachi, A. Ishikawa, K. Tomioka, S. Hara, K. Takasuka, H. Hisajima, A. Barlow, “ A Low Noise Integrated AMPS IF Filter,” IEEE Custom Integrated Circuits Conference, pp. 159-162, 1994.