簡易檢索 / 詳目顯示

研究生: 林慶鈞
Lin, Chin-Chun
論文名稱: 適用於調頻廣播之前端接收電路
A CMOS FM Broadcast Receiver Front-End IC
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 79
中文關鍵詞: 互補金氧半導體調頻接收機廣波
外文關鍵詞: broadcast, CMOS, FM, receiver
相關次數: 點閱:149下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文描述一個應用於調頻廣播系統,接收頻率在88~108 MHz之間的單一互補金氧半導體接收器晶片。為了實現單一積體化,我們採用了Low-IF的接收機架構以降低類似晶片外映像拒斥濾波器(off-chip image-reject filter)的使用,且在此同時,也可以避免類似直接降頻接收器所導致的直流偏差(DC-offset)和自我混波(self-mixing)問題。此互補金氧半導體調頻廣播接收器前端電路採用quadrature low-IF的架構,主要包含:首先是雙端輸入低雜訊放大器;接著的是Hartley架構的映像拒斥混波電路,其中有 I/Q主動式移頻混波器、二階低通濾波器、相位延遲器;最後是切換電容式的十階帶通濾波器。在這裡,接收的前端電路,可以使得高頻的輸入訊號,降頻至中頻頻率在225 kHz的同相位以及相位差90的中頻訊號。透過映像拒斥混波電路提高在映像拒斥的能力。

      本接收器電路是採用0.18微米單多晶層六金屬層之混合訊號製程來設計,結果顯示當高頻的輸入訊號操作頻率在88~108 MHz之間,訊號的頻寬為200kHz,最大訊號對雜訊和失真比(PSNDR)為44.3 dB,最大訊號對雜訊比(PSNR)為45.3 dB,動態範圍(dynamic range)為70dB。當工作電壓操作在1.8伏特時,此接收電路的消耗功率為63毫瓦,晶片總面積為0.93mm1mm其中不含Pads之面積為0.57mm0.62mm。

      This thesis describes a single-chip CMOS receiver for FM Stereo Radio system working in the 88~108-MHz range. Low-power single-cell fully-featured radio receivers, with a minimum of external components are hard to find. For a monolithic implementation, the use of the Low-IF architecture alleviates the necessity of off-chip components, used for image-reject passive filtering. At the same time, DC-offset and self-mixing problems arising from direction-conversion architecture are avoided. This CMOS FM receiver frond-end is a quadrature low-IF receiver consisting of a differential-ended low noise amplifier (LNA) connected to Hartley image-rejection mixer, which comprises Inphase/Quadrature interference mixers, second-order filters, and phase shifter, followed by tenth-order switched-capacitor bandpass filter. The frond-end converts the RF signal to differential I and Q signals, centered at 225-kHz. Degrading of image interference characteristic can be avoided by I/Q IF mixers and phase shift network.
      The receiver fabricated in a 0.18μm 1P6M mixed-signal CMOS mixed-mode process, achieve peak SNDR of 44.3 dB, peak SNR of 45.3 dB and dynamic range of 70dB with signal frequency of 88~108 MHz and signal bandwidth of 200 kHz. The combination draws 63 mW from a 1.8-V supply. The total chip area including bonding pads is 0.93mm1mm where the active area is 0.57mm0.62mm.

    Chapter 1 Introduction 1 1.1 Background ........................................................ 1 1.2 Motivation ........................................................ 2 1.3 Organization ...................................................... 3 Chapter 2 System Description and Architectures Design 4 2.1 Overview FM Receiver Technology ................................... 4 2.2.1 Integrated Receiver Circuits ................................. 5 2.2.2 Integrated Bandpass Filters Circuits ......................... 9 2.2 Alternative Receiver Architectures ................................ 11 2.2.1 Homodyne Receiver ............................................ 12 2.2.2 Super-Heterodyne Receiver .................................... 13 2.2.3 Low-IF Receiver .............................................. 14 2.2.4 Image-Reject Receiver ........................................ 16 2.3 Summary ........................................................... 17 Chapter 3 Design and Implementation of FM Receiver Front-End 19 3.1 FM Receiver Architecture .......................................... 19 3.2 Low Noise Amplifier Circuit Design ................................ 21 3.2.1 High Frequency Noise Model ................................... 22 3.2.2 Basic CMOS LNA Topology ...................................... 24 3.2.3 FM-Band CMOS LNA Design ...................................... 26 3.3 Mixer Circuit Design .............................................. 33 3.3.1 Mixer Topologies ............................................. 33 3.3.2 FM-Band CMOS Gilbert-Type Mixer Circuit Design ............... 34 3.4 IF Filtering Circuit Design ....................................... 38 3.4.1 Lowpass Filter Circuit Design ................................ 38 3.4.2 90 Degree Phase Shift Circuit (All-Pass Filter, APF) Design .. 44 3.4.3 IF Image-Rejection Filters for FM Receiver ................... 45 3.5 Switched-Capacitor Bandpass Filter Circuit Design ................. 47 3.5.1 Introduction of Switched-Capacitor Circuits .................. 47 3.5.2 Characteristics of Inverse Chebyshev Filter .................. 52 3.5.3 Filter Transfer Function ..................................... 54 3.5.4 SC BPF Filter Implementation ................................. 60 3.6 Operational Amplifier Circuit Design .............................. 62 3.7 Summary ........................................................... 65 Chapter 4 Implementation and Experiment Results 66 4.1 Floor Plan and Layout Considerations .............................. 66 4.2 Simulation Result ................................................. 69 4.3 Measurement Setup ................................................. 71 4.4 Summary ........................................................... 73 Chapter 5 Conclusions and Future Work 75 Bibliography 77

    [1] Kave Kianush, and Sjakko Sandee, “ Integrated Adaptive Channel Selectivity for FM Receivers,” IEEE International Solid-State Circuits Conference, pp. 388-389, 2000.

    [2] Taiwa Okanobu, and Toshiaki Tsuchiya, “ A Complete Single Chip AM/FM Radio Integrated Circuit,” IEEE Trans. Consumer Electron. vol. CE-28, pp. 393–408, Aug. 1982.

    [3] Taiwa Okanobu, Hitoshi Tomiyama, and Hiroshi Arimoto, “ Advanced Low Voltage Single Chip Radio IC,” IEEE Trans. Consumer Electron. vol. 38, pp. 465–475, Aug. 1992.

    [4] Daisuke Yamazaki, Chikara Nishi, and Taiwa Okanobu, “ A Complete Single Chip AM Stereo/FM Stereo Radio IC,” IEEE Trans. Consumer Electron. vol. 40, pp. 563-569, Aug. 1994.

    [5] Taiwa Okanobu, and Hitoshi Tomiyama, “ An Advanced Low Power Radio 1 Chip IC,” IEEE Trans. Consumer Electron. vol. 40, pp. 842-851, Aug. 1994.

    [6] Lothar Vogt, Dan Brookshire, Stefan Lottholz, and Guenther Zwiehoff “ A Two-Chip Digital Car Radio,” IEEE International Solid-State Circuits Conference, pp. 350-351, 1996.

    [7] Kave Kianush, “ A Complete AM/FM Stereo Receiver and Tuning System on a Single Chip,” IEEE International Solid-State Circuits Conference, pp. 256-257, 1996.

    [8] Matthijs Pardoen, John Gerrits, Vincent von Kaenel, “ A 0.9V 1.2mA 200MHz BiCMOS Single-Chip Narrow-Band FM Receiver,” IEEE International Solid-State Circuits Conference, pp. 348-349, 1996.

    [9] Taiwa Okanobu, Hitoshi Tomiyama, and Yukinobu Kawamura, “ An AM/TV/FM Stereo Radio IC Including IF Filters for a DTS,” IEEE Trans. Consumer Electron. vol. 43, pp. 655-661, Aug. 1997.

    [10] K. Kianush, C. Vaucher, “ A Global Car Radio IC with inaudible Signal Quality Checks,” IEEE International Solid-State Circuits Conference, pp. 130-131, 1998.

    [11] Hans Brekelmans, “ A Novel Multistandard TV/FM Front-End for Multimedia Applications,” IEEE Trans. Consumer Electron. vol. 44, pp. 280-288, Aug. 1998.

    [12] B-S. Song, and Jeffrey R. Barner, “ A CMOS Double-Heterodyne FM Receiver,” IEEE J. Solid-State Circuits, vol. SC-21, pp. 916-923, Dec. 1986.

    [13] B-S. Song, “ A Narrow-Band CMOS FM Receiver Based on Single-Sideband Modulation IF Filtering,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 1147-1154, Dec. 1987.

    [14] A. A. Abidi, “ Radio-Frequency Integrated Circuits for Portable Communications,” IEEE Custom Integrated Circuits Conference, pp. 8.1.1-8.1.8, 1994.

    [15] “AN192, A Complete FM Radio on a Chip,” Philips Semiconductors, Data Sheet.

    [16] “TDA700, FM Radio circuit,” Philips Semiconductors, Data Sheet.

    [17] “TDA5768HL, Low-power FM stereo radio for handheld applications,” Philips Semiconductors, Data Sheet.

    [18] G. A. De Veirman, and R. G. Yamasaki, “Design of a bipolar 10-MHz programmable continuous-time 0.05° equiripple linear phase filter,” IEEE J. Solid State Circuits, vol. 27, pp. 324-331, Mar. 1992.

    [19] T. C. Choi, R. T. Kaneshiro, R. W. Brodersen, P. R. Gray, W. B. Jett, and M. Wilcox, “High-Frequency CMOS Switched-Capacitor Filters for Communications Application,” IEEE J. of Solid-State Circuits, vol. SC-18,
    pp. 652-663, Dec. 1983.

    [20] P. J. Quinn, K. van Hartingsveldt, and Arthur H. M. van Roermund, “A 10.7-MHz CMOS SC Radio IF Filter Using Orthogonal Hardware Modulation,” IEEE J. of Solid-State Circuits, vol. 35, pp. 1865-1876, Dec. 2000.

    [21] A. Nagari, and G. Nicollini, “A 3 V 10 MHz Pseudo-Differential SC Bandpass Filter Using Gain Enhancement Replica Amplifier,” IEEE J. of Solid-State Circuits, vol. 33, pp. 626-630, Apr. 1998.

    [22] A. Nagari, A. Baschirotto, F. Montecchi, and R. Castello, “ A 10.7-MHz BiCMOS High-Q Double-Sampled SC Bandpass Filter,” IEEE J. of Solid-State Circuits, vol. 32, pp. 1491-1498, Oct. 1997.

    [23] G. Nicollini, F. Moretti, and M.Conti, “ High-frequency fully differential filter using operational amplifiers without common-mode feedback,” IEEE J. of Solid-State Circuits, vol. 24, pp. 808-813, Jun. 1989.

    [24] B-S. Song, “ A10.7-MHz Switched-Capacitor Bandpass Filter,” IEEE J. of Solid-State Circuits, vol. 24, pp. 320-324, Apr. 1989.

    [25] B-S. Song, and P. R. Gray, “ Switched-Capacitor High-Q Bandpass Filters,” IEEE J. of Solid-State Circuits, vol. SC-21, pp. 924-933, Dec. 1986.

    [26] Y. P. Tsividis, “ Integrated continuous-time filter design - an overview,” IEEE J. of Solid-State Circuits, vol. 29, pp. 166-176, Mar. 1994.

    [27] J. Silva-Martinez, M. S. J. Steyaert, W. Sansen, “ A10.7-MHz 68-dB SNR CMOS Continuous-Time Filter with On-Chip Automatic Tuning.” IEEE J. of Solid-State Circuits, vol. 27, pp. 1843-1853, Mar. 1992.

    [28] Yun-Ti Wang, F. Lu, A. A. Abidi, “ A 12.5MHz Continuous Time Bandpass Filter,” IEEE International Solid-State Circuits Conference, pp. 198-199, 1989.

    [29] C.-F. Chiou, R. Schaumann, “Design and performance of a fully integrated bipolar 10.7-MHz analog bandpass filter,” IEEE J. of Solid-State Circuits, vol. SC-21, pp. 6-14, Mar. 1986.

    [30] F. Krummenacher, and G. V. Ruymbeke, “ Integrated Selectivity for Narrow-Band FM IF Systems," IEEE J. Solid-State Circuits, pp. 757-760, Jun. 1990.

    [31] L-J Pu, and Y. P. Tsividis, “ Transistor-Only Frequency-Selective Circuits," IEEE Journal of Solid-State Circuits, vol. SC-25, pp. 821-832, Jun. 1990.

    [32] T. Adachi, A. Ishikawa, K. Tomioka, S. Hara, K. Takasuka, H. Hisajima, A. Barlow, “ A Low Noise Integrated AMPS IF Filter,” IEEE Custom Integrated Circuits Conference, pp. 159-162, 1994.

    下載圖示
    2005-07-15公開
    QR CODE