| 研究生: |
王志賢 Wang, Ji-Shang |
|---|---|
| 論文名稱: |
泥砂顆粒組成對黏性土石流體流變參數影響之研究 Effects of Sediment Composition on Debris Flow Rheological Parameters |
| 指導教授: |
詹錢登
Jan, Chyan-Deng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 173 |
| 中文關鍵詞: | 流變參數 、流變特性 、賓漢模式 、土石流 |
| 外文關鍵詞: | rheological properties, rheological parameter, debris flow, Bingham model |
| 相關次數: | 點閱:84 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是以賓漢模式來分析黏性土石流體的流變特性,藉由實驗的方法以及資料的分析,解析賓漢屈服應力及黏滯係數的影響因子,並以工程應用的觀點,建立土石流細泥漿體之流變參數評估方法,以及含礫石漿體流變參數之評估方法。
對土石流體細泥漿體而言,本文分析了31組不同泥砂粗成漿體之實驗結果,探討含砂濃度及泥砂粒徑分布對賓漢屈服應力及黏滯係數之影響,分析結果顯示,屈服應力隨含砂濃度的增加而呈指數型態的增加,即 。對不同的泥砂樣體而言,其增加的趨勢並不隨泥砂組成不同而變動,維持在一定值, ;但係數項 則與細泥成分有關,其對粒徑小於0.02mm的泥砂含量較為敏感,該粒徑以下之含量愈多,係數 即愈大;同樣地,對賓漢黏滯係數而言,其亦隨含砂濃度的增加而呈指數型態的增加,且其指數項亦在小範圍內變動可視為定值,但對其係數項較為敏感的參數即為粒徑小於0.01mm的泥砂含量,當小於0.01mm的泥砂含量愈大,其黏滯係數就愈大,本文即利用含砂濃度及粒徑成分因子,建立了細泥漿體的流變特性評估方法。
對含粗顆粒的漿體而言,本文藉由實驗的方法分析漿體中的粗顆粒含量,與粒徑對其流變特性的影響,實驗過程中以球形玻璃珠作為粗顆粒,其有四組粒徑分別為5、10、16、24mm,調配濃度由7%至20%之間,實驗的結果顯示,含粗顆粒的漿體較低的剪切率下(12 )仍可以賓漢流變模式來描述。當粗顆粒濃度小於15%以下時,其流型曲線與細泥漿體之流型曲線不易區隔,但其超過15%以後,屈服應力隨含砂粗顆粒含量的增加而增加,但是其增幅不若等量細泥含量增加來的大,且其粗顆粒粒徑愈小增加愈快。就黏滯係數而言,其隨粗顆粒含量的增加而增加,但增加的幅度並不若屈服應力來的大,此外,粒徑所產生之影響也不明顯,此為本文實驗條件下所得之結果,若其超越本文的實驗條件亦可能產生不同的變化。由上述之分析可知,含粗顆粒的漿體流變參數,並不宜以純細泥漿體的流變參數來使用,其將使得流變參數值發生高估的現象,如此將造成應用上的困擾。
本文綜合細泥漿體及含礫石漿體之流變特性分析,以細泥漿體的流變參數評估方法為基礎,發展出含礫石黏性土石流體流變參數的評估方法,此評估方法為先將現地土石流的土砂進行粒徑分析,篩出小於1mm以下的泥砂,將土砂分為粗、細二組,再求得細泥漿體中小於0.02mm及0.01mm泥砂的含量,再配合含砂濃度即可推估細泥漿體之流變參數。同時分析粗顆粒土砂所佔的總含砂量的百分比,即可推估完整的黏性土石流體流變參數值,此一評估方法將可供工程應用評估之參考。
Effects of sediment composition on the rheological parameters of viscous debris-flow slurries are investigated in this study, basing on the experimental data obtained by previous researchers and from the present study. The Bingham model is used to describe the rheological properties of viscous debris-flow slurries, which contains two rheological parameters: the Bingham viscosity ( ) and Bingham yield stress ( ). The method for estimating the rheological parameters were proposed.
As regards the rheological parameters of mud-slurry, there are 31 sets experimental data measured by different researchers were collected and analyzed to investigate the relations of rheological parameters and sediment concentration as well as sediment composition. The results demonstrate that Bingham yield stress exponentially increases with the increase of sediment concentration, and its relation can be written as . The coefficient in the power, varies in a quite narrow range around 0.2 for different slurry samplies, and seems can be treated as a constant, i.e. 0.2. But the coefficient significantly varies with the content of fine sediments, particularly for the size less then 0.02mm. For the sample having higher content of fine sediment has larger value of coefficient . The Bingham viscosity for mud-slurry can be also presented as an exponential function, . Similarly, the power coefficient can be treated as a constant, but the coefficient strongly depends on the content of fine sediments, especially for the size less then 0.01mm. This paper developed the relations between rheological parameters and sediment composition as well as sediment concentration. Once the sediment concentration and the sediment composition in a mud slurry are given, one can estimate the two rheological parameters of the mud slurry from the relations.
The effects of gravels on the rheological parameters of gravel-mud-slurries were also studied through a series of laboratory experiments. The gravels used in this study for each experiment have diameters of 5, 10, 16, and 24 mm, respectively, and the content of gravels in the experiments of gravel-mud slurries varied from 7% to 20%. The experimental results show that the rheological properties of gravel-mud mixtures could be described by the Bingham Model for the shear rate less than 12 . At the same total sediment concentration, the gravel-mud slurry has larger content of fine sediments has higher values of Bingham yield stress, but the Bingham viscosity seems has less sensitive to the gravel diameters. For estimate the Bingham yield stress of a gravel-mud slurry, we should not only consider the total sediment concentration in the slurry but also consider the sediment composition.
This paper has analyzed the rheological behaviors of mud-slurry and gravel-mud mixture, furthermore synthesized both of the results to develop a method that can be used to evaluate the rheological parameter of viscous debris flow in field. The first step is to sieve out the sediments that diameter less than 1mm from the debris flow, then divide the sediments into two sets, coarse and fine. Second, we should measure the content of sediment that diameters are less than 0.01mm and 0.02mm in the mud-slurry, and sediment concentration of mud-slurry. Once we ensure the three parameters above, the Bingham yield stress and Bingham viscosity will be determined. The final step is to analyze the ratio of coarse sediments to the total sediment by weight, and then the rheological parameters of viscous debris flow could be estimated. This method can help the engineers to estimate the rheological parameters in relative practical applications.
1. Bagnold, R. A. (1954), “Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear.” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol.225, No.1160, p.49-63.
2. Barnes, H.A. (1999), “The yield stress - A review or ‘’- everything flows?” Journal of Non-Newtonian Fluid Mechanics, Vol.81, p.133–178.
3. Blackwelder, E. (1928), “Mudflow as a geologic agent in seni-arid mountains.” Geological Society of America Bulletin, Vol.39, p.465-487.
4. Caruso, P. and Pareschi, M.T., (1993), “Estimation of lahar and lahar-runout flow hydrograph on natural beds. ” Environmental Geology, Vol.22, p.141-152.
5. Chanson, H., Jarny, S. and Coussot, P. (2006), “Dam break wave of thixotropic fluid.” Journal of Hydraulic Engineering, Vol.132, No.3, p.280-293.
6. Chen, C.L. (1988), “Generalized viscoplastic modeling of debris flow.” Journal of Hydraulic Engineering, Vol.114, No.3, p.237-258.
7. Contreras, S.M. and Davies, T.R.H. (2000), “Coarse-grained debris-flows: Hysteresis and time-dependent rheology.” Journal of Hydraulic Engineering, Vol.126, No12, p.938-941.
8. Coussot, P. and Piau, J. M., (1994), “On the behavior of fine mud suspensions.” Rheologica Acta, Vol. 33, p.175-184.
9. Coussot, P. (1995), “Structural similarity and transition from Newtonian to non-Newtonian behavior for clay-water suspensions.” Physical Review Letters, Vol.74, No.20, p.3971-3974.
10. Coussot, P. and Piau, J. M., (1995a), “The effects of an addition of force-free particles on the rheological properties of fine suspensions.” Canadian Geotechnical Journal, Vol. 32, p.263-270.
11. Coussot, P. and Piau, J. M., (1995b), “A large-scale field coaxial cylinder rheometer for the study of the rheology of natural coarse suspensions.” Journal of Rheology, Vol.39, No.1, p.105-124.
12. Coussot, P. and Meunier, M. (1996), “Recognition, classification and mechanical description of debris flows.” Earth-Science Review, Vol.40, p.209-227.
13. Coussot, P. (1997), “Mudflow rheology and dynamics.” International Association for Hydraulic Research, Netherlands.
14. Coussot, P. et al., (1998), “Direct determination of rheological characteristics of debris flow.” Journal of Hydraulic Engineering, Vol.124, No.8, p.865-868.
15. Genevois, R., Teca, P.R., Berti, M. and Simoni, A. (2000), “Debris flow in the Dolomites: Experimental data from a monitoring system.” Proceedings of the 2nd International Conference on Debris-flow Hazards Mitigation, Taipei, p.283-291.
16. Hampton, M.A. (1975), “Competence of fine-grained debris flows.” Journal of Sedimentary Petrology, Vol. 45, No. 4, p.834-844.
17. Hanes, D. M. , and Inman, D. L. (1985), Observations of Rapidly Flowing Granular-Fluid Materials. Journal of Fluid Mechanics, Vol. 150, pp. 357-380.
18. Hinds, N.E.A. (1943), “Geomorphology”, Prentice Hall Incorporation, New York.
19. Huizinga, R. J. (1996), Verification of Vertical Rotating Flume Using Non-Newtonian Fluids. Journal of Hydraulic Engineering, ASCE, Vol. 122, No. 8. , pp. 456-459.
20. Hungr, O., Evan, S.G., Bovis, M., and Hutchinson, J.N. (2001), “Review of the classification of landslides of the flow type” Environmental Engineering Geoscience, VII, p.221-238.
21. Hübl, J. and Steinwendtner, H., (2000), “Estimation of Rheological Properties of Viscous Debris Flow Using a Belt Conveyor.” Phys. Chem. Earth(B), Vol.25, No.9 ,p.751-755.
22. Iverson, R. M. (1997), “The physics of debris flows”, Reviews of Geophysics, Vol.35, No.3, p.245–296
23. Jan, C. D. Wang, Y.Y. and Han, W.L. (2000), “Resistance reduction of debris-flow due to air entrainment.” Proceedings of the 2nd International Conference on Debris-flow Hazards Mitigation, Taipei, p.369-372.
24. Jeffery, G. B., (1915), “On the steady rotation of solid of revolution in a viscous fluid.”, Proc. of London Mathematical Society, Vol.14, pp.327-338.
25. Jeffrey, D., et al. (2001), “Experimental Study of the Grain-Flow, Fluid-Mud Transition in Debris Flows”, Journal of Geology, Vol. 109, pp.427-447.
26. Johnson, A. M. (1970), “Physical processes in geology.” Freeman, Cooper and Company, p.431-571.
27. Johnson, A. M. and Rodine, J. R. (1984), “Slope Instability – Debris flow” John Wiley and Son, Edited by Brunsden, D. and Prior, D. B., p.257-361.
28. Kreiger, I. M. and Dougherty, T. J. (1959), “A mechanism for non-Newtonian flow in suspension of rigid spheres.” Trans. of the Society of Rheology, Vol. 3, p. 137-152.
29. Lin, M.L., Wang, K.L., and Huang, J.J., (2005), “Debris flow run off simulation and verification – case study of Chen-You-Lan Watershed, Taiwan.” Natural Hazards and Earth System Sciences, Vol.5, p.439-445.
30. Longwell, C.R. and Flint, R.F. (1962), “Introduction to physical geology.” John Wiley & Sons Incorporation, New York.
31. Lorenzini, G. and Mazza, N. (2004), “Debris flow phenomenology and rheological Modelling.” WIT Press, Boston.
32. Major, J. J. and Pierson, T., (1992), “Debris flow rheology: Experimental analysis of fine-grained slurries.” Water resource research, Vol. 28, No,3, p.841-857.
33. Mainali, A.P. and Rajaratnam, N. (1991), “Hydraulics of debris flows – A review.” Water Resources Engineering Report (WRE 91-2), University of Alberta, Canada.
34. Malet, J.P., Remaîtrea, A., and Maquaire, O., Ancey, C., and Locat, J. (2003), “Flow susceptibility of heterogeneous marly formations: implications for torrent hazard control in the Bacelonnete basin.” Proceedings of the 3rd International Conference on Debris-flow Hazards Mitigation, Davos, Switzerland, p.351-362.
35. Malet, J.P., Laigleb, D., Remaîtrea, A., and Maquaire, O., (2005), “Triggering conditions and mobility of debris flows associated to complex earthflows.” Geomorphology, Vol.66, p.215–235.
36. Martino, R., (2003), “Experimental analysis on the rheological properties of a debris flow deposit.” Proceedings of the 3rd International Conference on Debris-flow Hazards Mitigation, Davos, Switzerland, p363~371.
37. Mitschka, P., (1982), “Simple conversion of Brookfield R.V.T. readings into viscosity functions”, Rheological. Acta, Vol.21, pp.207-209.
38. Neaman, A. and Singer, A. (2000), “Rheological properties of aqueous suspensions of palygorskite.” Soil Science Society of America Journal, Vol.64, p.427-436.
39. Nguyen, Q.D. and Boger, D.V. (1992), “Measuring the flow properties of yield stress fluid.” Annual Review of Fluid Mechanics, Vol.24, p.44-88.
40. NIST, “Comparison of concrete rheometers: International tests at LCPC, Nantes, France in October, 2000. ” U.S. Department of Commerce, U.S.A.
41. Nitakawi, Y., Wada, K., and Egashira, K. (1981), “Particle-particle and particle-water interactions in aqueous clay suspensions. Part II. Viscosity data and interpretation.” Clay Science, Vol.5, p.319-331.
42. O'Brien, J.S. and Julien, P.Y. (1985), “Physical processes of hyperconcentrated sediment flows.” Proc. of the ASCE Specialty Conf. on the Delineation of Landslides, Floods, and Debris Flow Hazards in Utah, Utah Water Research Laboratory, Series UWRL/g-85/03, p.260-279.
43. O'Brien, J.S. and Julien, P.Y. (1988), “Laboratory analysis of mudflow properties.” Journal of Hydraulic Engineering, Vol.114, No.8, p.877-887.
44. Permien, T. and Lagaly, G. (1995), “The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds V. Bentonite and sodium montmorillonite and surfactants.” Clays and Clay Minerals, Vol.43, No.2, p.229-236.
45. Phillips, C.J. and Davies, T.R.H., (1991), “Determining rheological parameter of debris flow material. ” Geomorphology, Vol. 4, p.101-110.
46. Rickenmann, D. and Koch, T., (1997), “Comparison of debris flow modeling approaches.” Proceedings of the 1st International Conference on Debris-flow Hazards Mitigation, p.576-585.
47. Roscoe, R. (1952), “The viscosity of suspensions of rigid spheres.” British Journal of Applied Physics, Vol. 3, No. 8, p.267-269.
48. Savage, S. B. and McKeown, S. (1983), “Shear stresses developed during rapid shear of concentrated suspensions of large spherical particles between concentric cylinders.” Journal of Fluid Mechanics, Vol. 127, p. 453-472.
49. Savage, S. B. and Sayed, M. (1984), “Stresses developed by dry cohesionless granular materials sheared in an annular shear cell.” Journal of Fluid Mechanics, Vol. 142, p. 391-430.
50. Schatzmann, M., Fisher, P. and Bezzola, G.R. (2003), “Rheological behavior of fine and large particle suspensions.” Journal of Hydraulic Engineering, Vol.129, No.10, p.796-803.
51. Schatzmann, M. (2005), “Rheometry for large particle fluids and debris flow.” PhD. Thesis, Swiss Federal Institute of Technology Zurich.
52. Sharpe, C. F. S., (1938), “Landslides and related phenomenon.” Cooper Square Publications Inc., New York.
53. Sosio, R., Crosta, G.B., and Frattini, P. (2007), “Field observations, rheological testing and numerical modelling of a debris-flow event.” Earth Surface Processes and Landforms, Vol.32, p.290–306.
54. Stiny, J. (1910), “Die Muren” Verlag der Wagner’schen Universitäts-buchhandlung, Innsbruck. [“Debris flow” (English translation by Jacob, M. and Skermer), 1997, EBA Engineering Consultants, Vancouver, Canada]
55. Takahashi, T. (1978), “Mechanical characteristics of debris flow.” Journal of Hydraulic Engineering, Vol.104(HY8), p.1153-1169.
56. Takahashi, T. (1980), “Debris flow on prismatic open channel.” Journal of Hydraulic Engineering, Vol.106(HY3), p.381-396.
57. Takahashi, T, (2006), “Debris flows: Mechanics, Prediction and Countermeasures”, Draft.
58. Thomas, D. G. (1963), “Non-Newtonian Suspensions-Part I - Physical properties and laminar transport characteristics.” Industrial and Engineering Chemistry, Vol. 55, No. 11, p.18-29.
59. Thomas, D. G. (1965), “Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles.” Journal of Colloid Science, Vol. 20, No. 3, p.267-277.
60. Turian, R.M., Attal1, J.F., Sung, D.J., and Wedgewood, L.E. (2002), “Properties and rheology of coal-water mixtures using different coals.” Fuel, Vol.81, p.2019–2033.
61. VanDine, D. F. (1985), “Debris flows and debris torrents in the southern Canadian Cordillera.” Canadian Geotechnical Journal, Vol.22, p.44-68.
62. VanDine, D. F. and Bovis, M., (2002), “History and goals of Canadian debris flow research, a review”, Nature Hazards, Vol.26, p.69-82.
63. Van Wazer, J.R. et al., (1963), “Viscosity and flow measurement – A laboratory handbook of rheology.” Interscience Publishers, New York.
64. Wang, Z., P. Larsen, and Xiang, W., (1994), “Rheological Properties of Sediment Suspensions and Their Implication.” Journal of Hydraulic Research, IAHR, Vol.32, No.4, pp.495-516.
65. Wein, O., (1976), “The non-Newtonian creeping flow around a rotating spherical spindle.” Journal of Non-Newtonian Fluid Mechanics, Vol.1, pp.357-370.
66. Whorlow, R.W., (1980), “Rheological techniques.” John Wiley & Sons, New York.
67. Williams, R. W., (1979), “Determination of viscometric data from the Brookfield R.V.T. viscometer”, Rheological. Acta, Vol.18, pp.345-359.
68. Znamensky, D. and Gramani, M. F., (2000), “Debris flow grain-size analysis.” Proceedings of the 2nd International Conference on Debris-flow Hazards Mitigation, Taipei, Taiwan, p.537~545.
69. 王志賢,(2000),「粗顆粒材料對土石流體流變特性影響之實驗研究」,成功大學碩士學位論文。
70. 王裕宜、詹錢登、嚴璧玉,(2001),「土石流體結構和流變特性」,湖南出版社,中國。
71. 吳積善等人,(1990),「雲南蔣家溝土石流觀測研究」,科學出版社,北京。
72. 吳積善等人,(1993),「泥石流及其綜合治理」,科學出版社,北京,
73. 沈壽長,(1990),「幾種毛管式黏度計泥漿體流變試驗的比測」,山地研究,第3期,第137-146頁,中國。
74. 沈壽長,(1998),「土石流流變特性的試驗研究」,水利學報,第9期,第7-13頁,中國。
75. 余昌益,(1996),「高含砂水流流變參數之研究」,成功大學碩士學位論文。
76. 康志成等人,(2004),「中國泥石流研究」,科學出版社,北京。
77. 郭啟文,(2002),「泥漿體及礫石泥漿體之流變特性」,成功大學碩士學位論文。
78. 楊美卿,(1993),「高含沙漿體絮凝的微觀結構及其流變參數」,黃河高含沙水流運動規律及應用前景,科學出版社,第39-55頁,中國。
79. 陳弘殷,(1998),「阿公店水庫淤泥之流變特性」,成功大學碩士學位論文。
80. 費祥俊,(1983),「高含砂水流的顆粒組成及流動特性」,第二屆河流泥砂國際學術研討會,第296-308頁。
81. 費祥俊,(1993),「黃河中下游含沙水流粒度的計算模型」,黃河高含沙水流運動規律及應用前景,科學出版社,第1-19頁,中國。
82. 費祥俊,1994,「漿體與粒狀物料輸送水力學」,清華大學出版社,中國。
83. 詹錢登,(1997),「含砂濃度對含砂水體流變參數的影響之初步研究」,第一屆土石流研討會,第179-190頁。
84. 詹錢登,(2000),「土石流概論」,科技圖書股份有限公司,台灣。
85. 熊剛,(1996),「粘性泥石流的運動機理」,清華大學博士學位論文,北京。
86. 錢寧,(1989),「高含砂水流運動」,清華大學出版社,北京。
87. 韓文亮,(1991),「細顆粒漿體的應力鬆弛模型」,泥砂研究,第3期,第87-92頁,中國。
88. 謝慎良,(1991),「泥漿體流變參數試驗資料綜合分析」,第二屆全國泥石流學術會議論文集,第76-83頁,北京。