簡易檢索 / 詳目顯示

研究生: 黃睿信
Huang, Riu-Xin
論文名稱: 以混合溶液沖洗主動層製備鈣鈦礦太陽能電池
Fabrication of Perovskite Solar Cell by Mixed Solvents Dripping on Active Layer
指導教授: 高 騏
Gau, Chie
共同指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 81
中文關鍵詞: 鈣鈦礦太陽能電池溶液加工法鈣鈦礦中間相
外文關鍵詞: Pervoskite solar cells(PSCs), solvent engineering, intermediate phase
相關次數: 點閱:158下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是針對溶液加工法(solvent engineering)製備鈣鈦礦主動層做進一步的變化,溶液加工法已經是很成熟的製成,一般所使用的溶液皆為無極性溶液如甲苯、氯苯以及鄰-二氯苯,而使用甲苯做為溶液加工法所形成的薄膜會先經過鈣鈦礦中間相(MAI-PbI2-DMSO)再藉由退火形成鈣鈦礦相,而氯苯及鄰-二氯苯則是直接形成鈣鈦礦相,又由於兩者揮發速度造成結晶尺寸不同,使得效率特性有所差異。此研究藉由混合會造成不同結晶的溶液後做溶液加工法並且觀察其中的變化,以10、30、50、70、90 vol%之甲苯分別與氯苯以及鄰-二氯苯做混合,使得混合溶液加工法後中間相以及鈣鈦礦相有最佳的比例,藉此觀察最後製備出的元件特性。
    元件光電特性結果顯示,使用混合溶液加工法所製備的元件,填充因子以及電流密度皆與原先單溶液有所提升,其中又以70、90 vol%的甲苯與氯苯混合有明顯的不同,填充因子從原先0.69提升至0.73,影響填充因子其中的因素串聯電阻也有明顯下降,而電流密度也從原先15.65 mA cm^(-2)提升至17.02 mA cm^(-2)甚至可達到18.5 mA cm^(-2),而與鄰-二氯苯混合後,也可以提升電流密度至16.86 mA cm^(-2),並使其填充因子從0.68提升至0.73,以結果呈現證明藉由混和不同特性的溶液可以改善元件特性進而增加效率。

    The objective of this paper is to improve cell performance of Perovskite solar cells by using mixed non-solvents dripping on the active layer. Three different non-solvents, i.e., toluene, chlorobenzene or dichlorobenzene were commonly used for solvent engineering. However, toluene can remove excess solvents and quickly form intermediate phase. On the other hand, the use of dichlorobenzene or chlorobenzene to wash the film to make the phase transformation can skip formation of large-scale Perovskite-DMSO intermediate and directly form Perovskite crystallites. The chlorobenzene has faster evaporation rate as compared with dichlorobenzene, However rapid crystallization process increases crytal growth rate, which leads to formation of big size crytals. In the current work, different proportions of toluene mixed with chlorobenzene or dichlorobenzene are used to wash the film. By this way we can observe the intermediate phase mix Perovskite phase and improve cells properties.
    The photovoltaic properties of the devices show that the efficiency of PSCs fabricated by mixed solvents engineering can improve fill factor and current density compare with single solvent, especially 70 and 90 vol% toluene mixed with chlorobenzene has obvious improve. Fill factor promots from 0.69 to 0.73, and can reduce series resistance, current density increase from 15.65 mA cm^(-2) to 17.02 mA cm^(-2), final efficiency can be improve by mixed solvents engineering.

    中文摘要 I 英文延伸摘要 III 致 謝 VII 目 錄 VIII 第一章 太陽能電池緒論 1 1.1前言 1 1.2有機太陽能電池現況 1 1.2.1太陽能電池世代 1 1.3鈣鈦礦太陽能電池 3 1.4鈣鈦礦太陽能電池結構 4 1.5鈣鈦礦太陽能電池遲滯效應 7 1.6研究動機 8 1.7太陽能電池原理 9 1.8太陽能電池參數及損耗機制 12 1.8.1開路電壓(Open-circuit voltage, Voc) 12 1.8.2短路電流密度(Short-circuit current density, Jsc) 12 1.8.3短路電流密度填充因子(Fill factor, F.F.) 13 1.8.4轉換效率(Power conversion efficiency) 13 1.8.5損耗機制 13 第二章 實驗原理 16 2.1鈣鈦礦主動層型態控制 16 2.1.1製備鈣鈦礦薄膜 16 2.1.2溶劑選擇 19 2.1.3添加物改質 20 2.1.4蒸氣輔助退火 21 2.2電子傳輸層 22 2.3電洞傳輸層 24 第三章 實驗方法及步驟 26 3.1實驗材料 26 3.1.1基板材料 26 3.1.2電子傳輸層材料 26 3.1.3電洞傳輸層材料 26 3.1.4主動層材料 27 3.1.5電洞阻擋層材料 27 3.1.6有機溶劑材料 27 3.2實驗設備 28 3.3實驗製程 30 3.3.1前置作業 30 3.3.2元件製程 34 3.3.3實驗量測 37 第四章 實驗結果與討論 40 4.1前言 40 4.2溶液特性 40 4.3單溶液沖洗主動層之特性分析 41 4.3.1鈣鈦礦太陽能電池之元件效率量測 41 4.3.2主動層之表面形貌(掃描式電子顯微鏡SEM) 42 4.3.3主動層之X光繞射分析 43 4.3.4電池元件之可見光光譜儀量測以及光轉換效率 45 4.3.5主動層之剖面結構 47 4.4混合溶液沖洗主動層之特性分析 49 4.4.1鈣鈦礦太陽能電池之元件效率量測 49 4.4.2主動層之表面形貌(掃描式電子顯微鏡SEM) 52 4.4.3主動層之X光繞射分析 55 4.4.4電池元件之可見光光譜儀量測以及光轉換效率 57 4.4.5主動層之剖面結構 60 第五章 製備及研究金屬電洞傳輸層 62 5.1前言 62 5.2製備金屬粉末溶液 62 5.3特性與結果討論 65 第六章 總結 71 參考文獻 74

    1 D. Kearns, and M. Calvin, “The Photovoltaic Effect and Photoconductivity in Laminated Organic Systems”. Journal of Chemical Physics, 29, 950-951 (1958).
    2 B. O'Regan, F. Lenzmann, R. Muis, and J. Wienke, “A Solid-State Dye-Sensitized Solar Cell Fabricated With Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics”. Chemistry of Materials, 14, 5023-5029 (2002).
    3 J. Bandara, and H. Weerasinghe, “Solid-State Dye-Sensitized Solar Cell with P-type NiO as a Hole Collector”. Solar Energy Materials and Solar Cells, 85, 385-390 (2005).
    4 J. Tsukamoto, H. Ohigashi, K. Matsumura, and A. Takahashi, “A Schottky Barrier Type Solar Cell Using Polyacetylene”. Japanese Journal of Applied Physics, 20, 127 (1981).
    5 M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. Chang, and T. J. Marks, “P-Type Semiconducting Nickel Oxide as an Efficiency-Enhancing Anode Interfacial Layer in Polymer Bulk-Heterojunction Solar Cells”. Proceedings of the National Academy of Sciences, 105, 2783-2787 (2008).
    6 N. Yaacobi‐Gross, N. D. Treat, P. Pattanasattayavong, H. Faber, A. K. Perumal, N. Stingelin, D. DC. Bradley, P. N. Stavrinou, M. Heeney, and T. D. Anthopoulos, “High‐Efficiency Organic Photovoltaic Cells Based on the Solution‐Processable Hole Transporting Interlayer Copper Thiocyanate (CuSCN) as a Replacement for PEDOT:PSS”. Advanced Energy Materials, 5 (2015).
    7 J. Gong, J. Liang, and K. Sumathy, “Review on Dye-Sensitized Solar Cells (DSSCs): Fundamental Concepts and Novel Materials”. Renewable and Sustainable Energy Reviews, 16, 5848-5860 (2012).
    8 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”. Journal of the American Chemical Society, 131, 6050-6051 (2009).
    9 J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell”. Nanoscale, 3, 4088-4093 (2011).
    10 M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites”. Science, 338, 643-647 (2012).
    11 M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition”. Nature, 501, 395-398 (2013).
    12 J. Seo, S. Park, Y. C. Kim, N. J. Jeon, J. H. Noh, S. C. Yoon, and S. Seok, “Benefits of Very Thin PCBM and LiF Layers for Solution-Processed p–i–n Perovskite Solar Cells”. Energy & Environmental Science, 7, 2642-2646 (2014).
    13 J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, and S. H. Im, “Hysteresis-Less Inverted CH3NH3PbI3 Planar Perovskite Hybrid Solar Cells with 18.1% Power Conversion Efficiency”. Energy & Environmental Science, 8, 1602-1608 (2015).
    14 P. Shuping, H. Hao, Z. Jiliang, L. Siliu, Y. Yaming, W. Feng, Q. Tianshi, X. Hongxia, L. Zhihong, and C. Guanglei, “CH3NH3PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells”. Chemistry of Materials, 26, 1485-1491 (2014).
    15 W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. Seok, “High-Performance Photovoltaic Perovskite Layers Fabricated Through Intramolecular Exchange”. Science, 348, 1234-1237 (2015).
    16 S. Bai, Z. Wu , X. Wu, Y. Jin, N. Zhao, Z. Chen, Q. Mei, X. Wang, Z. Ye, and T. Song, “High-Performance Planar Heterojunction Perovskite Solar Cells: Preserving Long Charge Carrier Diffusion Lengths and Interfacial Engineering”. Nano Research, 7, 1749-1758 (2014).
    17 X. Liu, H. Yu, L. Yan, Q. Dong, Q. Wan, Y. Zhou, B. Song, and Y. Li, “Triple Cathode Buffer Layers Composed of PCBM, C60, and LiF for High-Performance Planar Perovskite Solar Cells”. ACS Applied Materials & Interfaces, 7, 6230-6237 (2015).
    18 J. Min, Z. G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, and T. Ameri, “Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions Toward High Performance”. Chemistry of Materials, 27, 227-234 (2014).
    19 D. X. Yuan, X. D. Yuan, Q. Y. Xu, M. F. Xu, X. B. Shi, Z. K. Wang, and L. S. Liao, “A Solution-Processed Bathocuproine Cathode Interfacial Layer for High-Performance Bromine–Iodine Perovskite Solar Cells”. Physical Chemistry Chemical Physics, 17, 26653-26658 (2015).
    20 H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. W. Wang, K. Wojciechowski, and W. Zhang, “Anomalous Hysteresis in Perovskite Solar Cells”. The Journal of Physical Chemistry Letters, 5, 1511-1515 (2014).
    21 E. Unger, E. Hoke, C. Bailie, W. Nguyen, A. Bowring, T. Heumüller, M. Christoforo, and M. McGehee, “Hysteresis and Transient Behavior in Current–Voltage Measurements of Hybrid-Perovskite Absorber Solar Cells”. Energy & Environmental Science, 7, 3690-3698 (2014).
    22 H. S. Kim, and N. G. Park, “Parameters Affecting I–V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer”. The Journal of Physical Chemistry Letters, 5, 2927-2934 (2014).
    23 Y. Shao, Z. Bi C. Xiao, Y. Yuan, and J. Huang, “Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells”. Nature, 5 (2014).
    24 蔡進. “超高效率太陽電池-從愛因斯坦的光電效應談起”. 物理雙月刊, 27, 701-719 (2005).
    25 M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design Rules for Donors in Bulk‐Heterojunction Solar Cells - Towards 10% Energy - Conversion Efficiency”. Advanced Materials, 18, 789-794 (2006).
    26 V. Mihailetchi, P. Blom, J. Hummelen, and M. Rispens, “Cathode Dependence of the Open-Circuit Voltage of Polymer: Fullerene Bulk Heterojunction Solar Cells”. Journal of Applied Physics, 94, 6849-6854 (2003).
    27 B. Conings, L. Baeten, C. De Dobbelaere, J. D'Haen, J. Manca, and H. G. Boyen, “Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach”. Advanced Materials, 26, 2041-2046 (2014).
    28 X. Hu, P. Du, W. Xu, K. Wang, C. Yi, C. Liu, F. Huang, X. Gong, and Y. Cao, “Efficient Perovskite Hybrid Solar Cells via Controllable Crystallization Film Morphology”. IEEE Journal of Photovoltaics, 5, 1402-1407 (2015).
    29 Q. Liang, J. Liu, Z. Cheng, Y. Li, L. Chen, R. Zhang, J. Zhang, and Y. Han, “Enhancing the Crystallization and Optimizing the Orientation of Perovskite Films via Controlling Nucleation Dynamics”. Journal of Materials Chemistry A, 4, 223-232 (2016).
    30 N. Tripathi, M. Yanagida, Y. Shirai, T. Masuda, L. Han, and K. Miyano, “Hysteresis-Free and Highly Stable Perovskite Solar Cells Produced via a Chlorine-Mediated Interdiffusion Method”. Journal of Materials Chemistry A, 3, 12081-12088 (2015).
    31 A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar Cells”. Advanced Functional Materials, 24, 3250-3258 (2014).
    32 G. E. Eperon, V. M. Burlakov, P. Docampo, A.Goriely, and H. J. Snaith, “Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells”. Advanced Functional Materials, 24, 151-157 (2014).
    33 K. Liang, D. B. Mitzi, and M. T. Prikas, “Synthesis and Characterization of Organic-Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique”. Chemistry of Materials, 10, 403-411 (1998).
    34 J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K Nazeeruddin, and M. Grätzel, “Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells”. Nature, 499, 316-319 (2013).
    35 C. H. Chiang, Z. L. Tseng, and C. G. Wu, “Planar Heterojunction Perovskite/PC71BM Solar Cells with Enhanced Open-Circuit Voltage via a (2/1)-Step Spin-Coating Process”. Journal of Materials Chemistry A, 2, 15897-15903 (2014).
    36 Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, High Yield Perovskite Photovoltaic Devices Grown by Interdiffusion of Solution-Processed Precursor Stacking Layers”. Energy & Environmental Science, 7, 2619-2623 (2014).
    37 C. X. Chen, H. W. Kang, S. Y. Hsiao, P. F. Yang, K. M. Chiang, and H. W. Lin, “Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition”. Advanced Materials, 26, 6647-6652 (2014).
    38 H. Hu, D. Wang, Y. Zhou, J. Zhang, S. Lv, S. Pang, X. Chen, Z. Liu, N. P. Padture, and G. Cui, “Vapour-Based Processing of Hole-Conductor-Free CH3NH3PbI3 Perovskite/C60 Fullerene Planar Solar Cells”. RSC Advances, 4, 28964-28967 (2014).
    39 Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process”. Journal of the American Chemical Society, 136, 622-625 (2013).
    40 N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. Seok, “Solvent Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells”. Nature, 13, 897-903 (2014).
    41 M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray‐Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A Fast Deposition‐Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin‐Film Solar Cells”. Angewandte Chemie, 126, 10056-10061 (2014).
    42 J. W. Jung, S. T. Williams, and A. K-Y Jen, “Low-Temperature Processed High-Performance Flexible Perovskite Solar Cells via Rationally Optimized Solvent Washing Treatments”. RSC Advances, 4, 62971-62977 (2014).
    43 Y. C. Chern, H. R. Wu, Y. C. Chen, H. W. Zan, H. F. Meng, and S. F. Horng, “Reliable Solution Processed Planar Perovskite Hybrid Solar Cells with Large-Area Uniformity by Chloroform Soaking and Spin Rinsing Induced Surface Precipitation”. AIP Advances, 5, 087125 (2015).
    44 X. Wang, X. Li, G. Tang, L. Zhao, W. Zhang, T. Jiu, and J. Fang, “Improving Efficiency of Planar Hybrid CH3NH3PbI3-xClx Perovskite Solar Cells by Isopropanol Solvent Treatment”. Organic Electronics, 24, 205-211 (2015).
    45 H. B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, and J. Y. Kim, “Mixed Solvents for the Optimization of Morphology in Solution-Processed, Inverted-Type Perovskite/Fullerene Hybrid Solar Cells”. Nanoscale, 6, 6679-6683 (2014).
    46 B. Cai, W. H. Zhang, and J. Qiu, “Solvent Engineering of Spin-Coating Solutions for Planar-Structured High-Efficiency Perovskite Solar Cells”. Chinese Journal of Catalysis, 36, 1183-1190 (2015).
    47 S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, and G. Calestani, “MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties”. Chemistry of Materials, 25, 4613-4618 (2013).
    48 Q. Chen, H. Zhou, Y. Fang, A. Z. Stieg, T. B. Song, H. H. Wang, X. Xu, Y. Liu, S. Lu, and J. You, “The Optoelectronic Role of Chlorine in CH3NH3PbI3 (Cl)-Based Perovskite Solar Cells”. Nature, 6 (2015).
    49 S. T. Williams, F. Zuo, C. C. Chueh, C. Y. Liao, P. W. Liang, and A. K-J Jen, “Role of Chloride in the Morphological Evolution of Organo-Lead Halide Perovskite Thin Films”. ACS Nano, 8, 10640-10654 (2014).
    50 C. C. Chueh, C. Y. Liao, F. Zuo, S. T Williams, P. W. Liang, and A. K-J Jen, “The Roles of Alkyl Halide Additives in Enhancing Perovskite Solar Cell Performance”. Journal of Materials Chemistry A, 3, 9058-9062 (2015).
    51 J. You, Y. M. Yang, Z. Hong, T. B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W. H. Chang, and H. Li, “Moisture Assisted Perovskite Film Growth for High Performance Solar Cells”. Applied Physics Letters, 105, 183902 (2014).
    52 M. K. Gangishetty, R. W. Scott, and T. L. Kelly, “Effect of Relative Humidity on Crystal Growth, Device Performance and Hysteresis in Planar Heterojunction Perovskite Solar Cells”. Nanoscale (2016).
    53 Y. Zhou, M. Yang, W. Wu, A. L Vasiliev, K. Zhu, and N. P Padture, “Room-Temperature Crystallization of Hybrid-Perovskite Thin Films via Solvent-Solvent Extraction for High-Performance Solar Cells”. Journal of Materials Chemistry A, 3, 8178-8184 (2015).
    54 J. Liu, C. Gao, X. He, Q. Ye, L. Ouyang, D. Zhuang, C. Liao, J. Mei, and W. Lau, “Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell”. ACS Applied Materials & Interfaces, 7, 24008-24015 (2015).
    55 H. Yu, X. Liu, Y. Xia, Q. Dong, K. Zhang, Z. Wang, Y. Zhou, B. Song, and Y. Li, “Room-Temperature Mixed-Solvent-Vapor Annealing for High Performance Perovskite Solar Cells”. Journal of Materials Chemistry A, 4, 321-326 (2016).
    56 G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, “Solvent Annealing Effect in Polymer Solar Cells Based on Poly (3‐hexylthiophene) and Methanofullerenes”. Advanced Functional Materials, 17, 1636-1644 (2007).
    57 Y. Shao, Y. Yuan, and J. Huang, “Correlation of Energy Disorder and Open-Circuit Voltage in Hybrid Perovskite Solar Cells”. Nature, 1, 15001 (2016).
    58 K. Wang, Y. Shi, Q. Dong, Y. Li, S. Wang, X. Yu, M. Wu, and T. Ma, “Low-Temperature and Solution-Processed Amorphous WOx as Electron-Selective Layer for Perovskite Solar Cells”. The Journal of Physical Chemistry Letters, 6, 755-759 (2015).
    59 Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large Fill-Factor Bilayer Iodine Perovskite Solar Cells Fabricated by a Low-Temperature Solution-Process”. Energy & Environmental Science, 7, 2359-2365 (2014).
    60 P. W. Liang, C. C. Chueh, S. T. Williams, and A. K-Y Jen, “Roles of Fullerene‐Based Interlayers in Enhancing the Performance of Organometal Perovskite Thin-Film Solar Cells”. Advanced Energy Materials, 5 (2015).
    61 Y. Shao, Z. Bi. C. Xiao, Y. Yuan, and J. Huang, “Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells”. Nature, 5 (2014).
    62 J. Xu, A. Buin, A. H Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, and J. J McDowell, “Perovskite-Fullerene Hybrid Materials Suppress Hysteresis in Planar Diodes”. Nature, 6 (2015).
    63 J. You, L. Meng, T. B. Song, T. F. Guo, Y. M. Yang, W. H. Chang, Z. Hong, H. Chen, H. Zhou, and Q. Chen, “Improved Air Stability of Perovskite Solar Cells via Solution-Processed Metal Oxide Transport Layers”. Nature, 11, 75-81 (2016).
    64 C. H. Chiang, and C. G. Wu, “Bulk Heterojunction Perovskite -PCBM Solar Cells with High Fill Factor”. Nature (2016).
    65 J. H. Heo, S. H. Im, J. H. Noh, T. N Mandal, C. S. Lim, J. Ah Chang, Y. H. Lee, H. J. Kim, A. Sarkar, and M. Nazeeruddin, “Efficient Inorganic-Organic Hybrid Heterojunction Solar Cells Containing Perovskite Compound and Polymeric Hole Conductors”. Nature, 7, 486-491 (2013).
    66 N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. Seok, “Compositional Engineering of Perovskite Materials for High-Performance Solar Cells”. Nature, 517, 476-480 (2015).
    67 J. H. Noh, N. J. Jeon, Y. C. Choi, M. Nazeeruddin, M. Grätzel, and S. Seok, “Nanostructured TiO2/CH3NH3PbI3 Heterojunction Solar Cells Employing Spiro-OMeTAD/Co-Complex as Hole-Transporting Material”. Journal of Materials Chemistry A, 1, 11842-11847 (2013).
    68 Z. K. Wang, M. Li, D. X. Yuan, X. B. Shi, H. Ma, and L. S. Liao, “Improved Hole Interfacial Layer for Planar Perovskite Solar Cells with Efficiency Exceeding 15%”. ACS Applied Materials & Interfaces, 7, 9645-9651 (2015).
    69 C. Li, “Poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate)(PEDOT: PSS)-Molybdenum Oxide Composite Films As Hole Conductor For Efficient Planar Perovskite Solar Cells”. Journal of Materials Chemistry A (2016).
    70 A. S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes, and S. K Sarkar, “Inorganic Hole Conducting Layers for Perovskite-Based Solar Cells”. The Journal of Physical Chemistry Letters, 5, 1748-1753 (2014).
    71 S. Chatterjee, and A. J. Pal, “Introducing Cu2O Thin-Films as a Hole-Transport Layer in Efficient Planar Perovskite Solar Cell Structures”. The Journal of Physical Chemistry C (2015).
    72 S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang, “CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%”. Nano Letters, 15, 3723-3728 (2015).
    73 J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, T. F. Guo, P. Chen, T. C. Wen, and Y. J. Hsu, “Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells”. Advanced Materials, 26, 4107-4113 (2014).
    74 J. H. Kim, P. W. Liang, S. T Williams, N. Cho, C. C. Chueh, M. Glaz, D. Ginger, and A. K-Y Jen, “High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer”. Advanced Materials, 27, 695-701 (2015).

    下載圖示 校內:2019-07-01公開
    校外:2019-07-01公開
    QR CODE