| 研究生: |
王璽瑞 Wang, Hsi-Jui |
|---|---|
| 論文名稱: |
低互擾單電感雙輸出電壓模式控制降壓型電壓調節器 Low Cross Regulation Voltage-Mode Controlled Single-Inductor Dual-Outputs (SIDO) Buck Regulator |
| 指導教授: |
張簡樂仁
Chang-Chien, Le-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 互擾 、單電感雙輸出 、降壓型電壓調節器 |
| 外文關鍵詞: | Cross regulation, SIDO, Buck regulator |
| 相關次數: | 點閱:107 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個低互擾式單電感雙輸出降壓型電壓調節器。經由調整相序之方式,使此切換式電壓調節器可以擁有架構簡單、固定的切換頻率以及低互擾之特性。與單電感單輸出電壓調節器相比,單電感雙輸出電壓調節器具有降低面積、節省元件與成本等優點,但單電感雙輸出電壓調節器中,由於兩組輸出共用一組電感所提供之能量,因此當其中一相發生暫態,另一相之電壓會受到影響,稱為互擾,常見解決互擾之方式為不連續電流導通模式控制,但此控制法有輸出功率限制以及輸出漣波過大等缺點。
在本論文中提出了換相式單電感雙輸出之電路模型,使其在連續電流導通模式控制下具有低互擾之特性,且無輸出功率之限制,實驗結果顯示輸出功率可提供約1瓦特。並依此架構由電壓模式控制進行模型推導,設計一專為換相式單電感雙輸出設計之控制晶片,此晶片是由台灣積體電路公司0.35微米製程所實現。模擬結果顯示經由換相之控制,任一相之負載變動對於另一相造成之互擾可降低為普通電壓模式控制之五分之一以下。
A Phase Sequence Interchange (PSI) scheme which can provide low cross regulation for SIDO buck regulator is proposed. By applying the PSI scheme with the voltage-mode control, the SIDO buck regulator has simple circuit design, fixed frequency and low cross regulation characteristics. Compared to the same purpose of using two single-inductor single-output (SISO) voltage regulators, the SIDO voltage regulator has advantages of area efficiency, less usage of passive component and lower cost. However, because the two outputs of the SIDO regulator share the same incoming energy from the single inductor, when one phase is doing transient, the other phase will suffer from the voltage disturbance, which is called cross regulation. A common method to solve the cross regulation problem is adopting discontinuous conduction mode control, nevertheless, this control method easily leads to large output voltage ripple with limited power output. Therefore, the proposed PSI scheme SIDO buck regulator is intended to work in continuous conduction mode to enlarge the output power supply capability. The circuit model derivation and IC chip design for the PSI scheme are illustrated in detail. The IC chip is fabricated by TSMC 0.35µm process. Simulation results show that during one phase transient, the cross regulation occurs in another phase is reduced to less than one-fifth of the cross-regulation effect from the normal voltage-mode operation of the SIDO buck regulator.
[1] A. I. Pressman, Switching Power Supply Design, McGraw-Hill, 1999.
[2] Y. J. Woo, H. P. Le, G. H. Cho, and S. I. Kim, “Load-Independent Control of Switching DC-DC Converters With Freewheeling Current Feedback,” IEEE J. Solid-State Circuits, vol. 43, no. 12, Dec. 2008.
[3] H. P. Le, C. S. Chae, K. C. Lee, S. W. Wang, G. H. Cho, “A Single-Inductor Switching DC–DC Converter With Five Outputs and Ordered Power-Distributive Control,” IEEE J. Solid-State Circuits, vol. 42, no. 12, Dec. 2007.
[4] X. Jing., P. K. T. Mok, and M. C. Lee, “A Wide-Load-Range Constant-Charge-Auto-Hopping Control Single-Inductor-Dual-Output boost Regulator With Minimized Cross-Regulation,” IEEE J. Solid-State Circuits, vol. 46, no. 10, Oct. 2011.
[5] D. Ma, W. H. Ki, and C. Y. Tsui, “A Pseudo-CCM/DCM SIMO Switching Converter With Freewheel Switching,” IEEE J. Solid-State Circuits, vol. 38, no. 6, Jun. 2003.
[6] Y. H. Lee, Y. Y. Yang, S. J. Wang, K. H. Chen, Y. H. Lin, Y. K. Chen, and C. C. Huang, “Interleaving Energy-Conservation Mode (IECM) Control in Single-Inductor Dual-Output (SIDO) Step-Down Converters With 91% Peak Efficiency,” IEEE J. Solid-State Circuits, vol. 46, no. 4, Apr. 2011.
[7] W. Xu, Y. Li, X. H. Gong, Z. L. Hong, and D. Killat, “A Dual-Mode Single-Inductor Dual-Output Switching Converter With Small Ripple,” IEEE Trans. Power Electron, vol. 25, no. 3, Mar. 2010
[8] Y. H. Lee, T. C. Huang, Y. Y. Yang, W. S. Chou, K. H. Chen, C. C. Huang, and Y. H. Lin, “Minimized Transient and Steady-State Cross Regulation in 55-nm CMOS Single-Inductor Dual-Output (SIDO) Step-Down DC-DC Converter,” IEEE J. Solid-State Circuits, vol. 46, no. 11, Nov. 2011.
[9] K. Y. Lin, C. S. Huang, D. Chen and K. H. Liu, “Modeling and Design of Feedback Loops for a Voltage-Mode Single-Inductor Dual-Output Buck Converter,” 978-1-4244-1668-4/08/$25.00 ©2008 IEEE.
[10] D. A. John, K. Martin, “Analog Integrated Circuit Design”, Wiley, 1999.
[11] R. Gregorian, “Introduction to CMOS Op-Amps and Comparators”, Wiley, 1999
[12] K. N. Leung, P. K. T. Mok, “A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 526–530, Apr. 2002.
[13] A. Hastings, “The Art of Analog Layout”, Englewood Cliffs, NJ: Prentice-Hall, 2001.
[14] L. E. Han, V. B. Perez, M. L. Cayanes, M. G. Salaber, CMOS Transistor Layout KungFu, www.eda-utilities.com
[15] W. R. Liou, M. L. Yeh, and Y. T. Kuo, “A High Efficiency Dual-Mode Buck Converter IC For Portable Applications,” IEEE Trans. Power Electron, vol. 23, no. 2, pp. 667–677, Mar. 2008.
[16] Robert W. Erickson Dragan Maksimovic, “Fundamentals of Power Electronics Second Edition”
[17] Richard C. Dorf, Robert H. Bishop, “Modern Control Systems” Prentice-Hall, 2002