研究生: |
陳彥君 Chen, Yen-Chun |
---|---|
論文名稱: |
基於摩擦力模型及適應性PI滑模擴張狀態觀測器之循跡運動精度改善研究 Study on Contour Accuracy Improvement Based on Friction Model and Adaptive PI-type Sliding Mode Extended State Observer |
指導教授: |
鄭銘揚
Cheng, Ming-Yang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 循跡控制 、適應性控制 、滑動模式控制 、干擾補償 、摩擦力模型 |
外文關鍵詞: | tracking control, adaptive control, sliding mode control, disturbance compensation, friction compensation |
相關次數: | 點閱:117 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
伺服機構如X-Y平台及CNC機台存在非線性現象和外部干擾,容易造成循跡控制精度下降。這其中又以摩擦力為多數X-Y運動平台及CNC機台中最常見之非線性外擾。有鑑於此,探討及鑑別各式摩擦力模型,並設計摩擦力補償架構以克服摩擦力對系統的影響,為本論文的研究主題之一。本論文比較數種摩擦力模型對摩擦力現象的抑制效果,同時建構LuGre與GMS摩擦力模型並比較其在低速補償與追蹤精度改善的效果。除了摩擦力之外,CNC機台亦存在有:背隙、參數鑑別不精確等現象。為了精準估測位置、速度與系統總干擾量,本論文另一研究主題為擴張狀態觀測器。將Model-based的互補式滑模控制器搭配本論文所提出之適應性PI滑模擴張狀態觀測器,不但可精準估測系統狀態,亦可將估測之系統總干擾量補償至系統,進而達到高精度循跡控制之訴求。為驗證本論文所提方法之可行性,本論文不僅以MATLAB軟體模擬,同時亦使用XY運動平台進行循跡控制實驗。實驗結果顯示,本論文所提之適應性PI滑模擴張狀態觀測器之估測精準度與回授補償效果皆優於其他擴張狀態觀測器架構。
The nonlinear phenomena and external disturbances often found in the servomechanisms such as X-Y tables and CNC machines may deteriorate the tracking accuracy. Among them, friction is the most common nonlinear external disturbance in the X-Y tables and CNC machines. Hence, one of the main research topics of this thesis is to explore and construct various friction models so as to design friction compensation schemes to overcome the influence of friction on the system. This thesis compares the effectiveness of several friction models in suppressing the adverse effects caused by friction. Both the LuGre and GMS friction models are constructed and their effectiveness on low speed compensation and tracking accuracy improvement are compared. In addition to friction, CNC machines often encounter phenomenon such as backlash and modelling inaccuracy. In order to accurately estimate position, velocity and total disturbance of the system, the extended state observer (ESO) is another research topic in this thesis. Combining the model-based complementary sliding mode controller with the adaptive PI sliding mode extended state observer (APISMESO) proposed in this thesis can not only accurately estimate the system states such as position and velocity, but also compensate the estimated total disturbance into the system so as to achieve the goal of high contour following accuracy. To verify the feasibility of the proposed approach, this thesis not only conducts MATLAB simulation, but also uses the X-Y table to perform contour following experiments. Experimental results show that the proposed adaptive PISMESO is superior to other ESO architectures in estimating accuracy and feedback compensation.
[1] A. N. Poo, J. G. Bollinger, and G. W. Younkin, “Dynamic errors in type 1 contouring systems,” IEEE Transactions on Industry Applications, vol. IA-8, no. 4, pp. 477-484, Jul. 1972.
[2] R. Ramesh, M. A. Mannan, and A. N. Poo, “Tracking and contour error control in CNC servo systems,” International Journal of Machine Tools Manufacture, vol. 45, no. 3, pp. 301-326, Oct. 2005.
[3] 蘇科翰,輪廓誤差控制於參數式自由曲線循跡運動之研究,博士論文,國立成功大學電機工程學系,台灣,2008。
[4] L. Piegl and W. Tiller, The NURBS Book. New York : Springer, 1997.
[5] M. Y. Cheng, M. C. Tsai, and J. C. Kuo, “Real-time NURBS command generators for CNC servo controllers,” International Journal of Machine Tools Manufacture, vol. 42, no. 7, pp. 801-813, May. 2002.
[6] L. Piegl, “On NURBS: a survey,” IEEE Computer Graphics Applications, vol. 11, no. 1, pp. 55-71, Jan. 1991.
[7] C. D. Walrath, “Adaptive bearing friction compensation based on recent knowledge of dynamic friction,” Automatica, vol. 20, no. 6, pp. 717-727, Nov. 1984.
[8] H. S. Lee and M. Tomizuka, “Robust motion controller design for high-accuracy positioning systems,” IEEE Transactions on Industrial Electronics, vol. 43, no. 1, pp. 48-55, Feb. 1996.
[9] P. Tomei, “Robust adaptive friction compensation for tracking control of robot manipulators,” IEEE Transactions on Automatic Control, vol. 45, no. 11, pp. 2164-2169, Nov. 2000.
[10] Y. Tan and I. Kanellakopoulos, “Adaptive nonlinear friction compensation with parametric uncertainties,” in Proceedings of the 1999 American Control Conference, San Diego, California, USA, 1999, pp. 2511-2515.
[11] C. I. Huang and L. C. Fu, “Adaptive approach to motion controller of linear induction motor with friction compensation,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 4, pp. 480-490, Aug. 2007.
[12] C. C. D. Wit, H. Olsson, K. J. Astrom, and P. Lischinsky, “A new model for control of systems with friction,” IEEE Transactions on Automatic Control, vol. 40, no. 3, pp. 419-425, Mar. 1995.
[13] J. Swevers, A. B. Farid, C. G. Ganseman, and T. Projogo, “An integrated friction model structure with improved presliding behavior for accurate friction compensation,” IEEE Transactions on Automatic Control, vol. 45, no. 4, pp. 675-686, Apr. 2000.
[14] V. Lampaert, J. Swevers, and A. B. Farid, “Modification of the Leuven integrated friction model structure,” IEEE transactions on Automatic Control, vol. 47, no. 4, pp. 683-687, Apr. 2002.
[15] A. B. Farid, V. Lampaert, and J. Swevers, “The generalized Maxwell-slip model: a novel model for friction simulation and compensation,” IEEE Transactions on Automatic Control, vol. 50, no. 11, pp. 1883-1887, Nov. 2005.
[16] T. Tjahjowidodo, A. B. Farid, and H. Van Brussel, “Friction identification and compensation in a DC motor,” IFAC Proceedings Volumes, vol. 38, no. 1, pp. 554-559, Jul. 2005.
[17] T. Piatkowski, “GMS friction model approximation,” Mechanism Machine Theory, vol. 75, pp. 1-11, May. 2014.
[18] Z. Jamaludin, H. Van Brussel, and J. Swevers, “Friction compensation of an XY feed table using friction-model-based feedforward and an inverse-model-based disturbance observer,” IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 3848-3853, Oct. 2009.
[19] J. Han, “From PID to active disturbance rejection control,” IEEE transactions on Industrial Electronics, vol. 56, no. 3, pp. 900-906, Mar. 2009.
[20] B. Z. Guo and Z. L. Zhao, “On convergence of non-linear extended state observer for multi-input multi-output systems with uncertainty,” IET Control Theory and Applications, vol. 6, no. 15, pp. 2375-2386, Oct. 2012.
[21] B. Z. Guo and Z. l. Zhao, “On the convergence of an extended state observer for nonlinear systems with uncertainty,” Systems Control Letters, vol. 60, no. 6, pp. 420-430, Jun. 2011.
[22] Z. Gao, “Scaling and bandwidth-parameterization based controller tuning,” in Proceedings of the American control conference, Denver, Colorado, USA, Jun. 2006, pp. 4989-4996.
[23] X. Wang, R. Liao, C. Shi, and S. Wang, “Linear extended state observer-based motion synchronization control for hybrid actuation system of more electric aircraft,” Sensors, vol. 17, no. 11, p. 2444, Oct. 2017.
[24] D. Yoo, S. S. T. Yau, and Z. Gao, “On convergence of the linear extended state observer,” in Proceedings of 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, Munich, Germany, 2006, pp. 1645-1650.
[25] Z. Gao, Y. Huang, and J. Han, “An alternative paradigm for control system design,” in Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida, USA, 2001, pp. 4578-4585.
[26] D. Astolfi and L. Marconi, “A high-gain nonlinear observer with limited gain power,” IEEE Transactions on Automatic Control, vol. 60, no. 11, pp. 3059-3064, Nov. 2015.
[27] B. Liu, C. A. Zhu, and Y. Jin, “Speed control for the lateral swing of aerial cameras based on an improved extended state observer,” Journal of the Chinese Institute of Engineers, vol. 41, no. 2, pp. 124-131, Mar. 2018.
[28] Z. Pu, R. Yuan, J. Yi, and X. Tan, “A class of adaptive extended state observers for nonlinear disturbed systems,” IEEE Transactions on Industrial Electronics, vol. 62, no. 9, pp. 5858-5869, Sep. 2015.
[29] D. Yoo, S. S. T. Yau, and Z. Gao, “Optimal fast tracking observer bandwidth of the linear extended state observer,” International Journal of Control, vol. 80, no. 1, pp. 102-111, Jan. 2007.
[30] S. K. Spurgeon, “Sliding mode observers: a survey,” International Journal of Systems Science, vol. 39, no. 8, pp. 751-764, May. 2008.
[31] S. Drakunov and V. Utkin, “Sliding mode observers. Tutorial,” in Proceedings of 1995 34th IEEE Conference Decision and Control, New Orleans, Los Angeles, USA, 1995, pp. 3376-3378.
[32] S. V. Drakunov, “Sliding-mode observers based on equivalent control method,” in Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, Arizona, USA, 1992, pp. 2368-2369.
[33] R. A. A. Wameedh and I. K. Ibraheem, “Improved sliding mode nonlinear extended state observer based active disturbance rejection control for uncertain systems with unknown total disturbance,” International Journal of Advanced Computer Science Applications, vol. 7, no. 12, pp. 80-93, Dec. 2016.
[34] W. Tiller, “Rational B-splines for curve and surface representation,” IEEE Computer Graphics and Applications, vol. 3, no. 6, pp. 55-71, Sep. 1991.
[35] S. H. Suh, Acceleration and Deceleration. London : Springer, 2008.
[36] M. C. Tsai, M. Y. Cheng, K. F. Lin, and N. C. Tsai, “On acceleration/deceleration before interpolation for CNC motion control,” in Proceedings of IEEE International Conference on Mechatronics, Taipei, Taiwan, 2005, pp. 382-387.
[37] 劉叡明,伺服馬達低轉速控制改善之研究,碩士論文,國立成功大學電機工程學系,台灣,2008。
[38] C. T. Johnson and R. D. Lorenz, “Experimental identification of friction and its compensation in precise, position controlled mechanisms,” IEEE Transactions on Industry Applications, vol. 28, no. 6, pp. 1392-1398, Nov./Dec. 1992.
[39] 吳仁哲,伺服控制系統之摩擦力與干擾補償研究,碩士論文,國立成功大學電機工程學系,台灣,2009。
[40] 林銘湧,精密伺服控制系統之摩擦力分析及補償研究,碩士論文,逢甲大學自動控制工程系,台灣,2000。
[41] A. H. Brain, “Stick slip and control in low-speed motion,” IEEE Transactions on Automatic Control, vol. 38, no. 10, pp. 1483-1496, Oct. 1993.
[42] D. Karnopp, “Computer simulation of stick-slip friction in mechanical dynamic systems,” Journal of Dynamic Systems, Measurement, Control, vol. 107, no. 1, pp. 100-103, Mar. 1985.
[43] A. H. Brain, P. Dupont, and C. C. D. Wit, “A survey of models, analysis tools and compensation methods for the control of machines with friction,” Automatica, vol. 30, no. 7, pp. 1083-1138, Jul. 1994.
[44] D. A. Haessig and B. Friedland, “On the modeling and simulation of friction,” in Proceedings of 1990 American Control Conference, San Diego, California, USA, 1990, pp. 1256-1261.
[45] P. R. Dahl, “A solid friction model,” The Aerospace Corporation, El Segundo, California, USA, Tech. Report, TOR-158(3107-18), May. 1968.
[46] 林政緯,基於視覺之及時光纖對位研究,碩士論文,國立成功大學電機工程學系,2006。
[47] P. Ge and M. Jouaneh, “Modeling hysteresis in piezoceramic actuators,” Precision Engineering, vol. 17, no. 3, pp. 211-221, Jul. 1995.
[48] B. J. Lazan, Damping of materials and members in structural mechanics. London, U.K.: Pergamon, 1968.
[49] H. Hu and R. B. Mrad, “A discrete-time compensation algorithm for hysteresis in piezoceramic actuators,” Mechanical Systems and Signal Processing, vol. 18, no. 1, pp. 169-185, Jan. 2004.
[50] M. Versteyhe, “Development of an ultra-stiff piezostepper with nanometer resolution,” Ph.D. dissertation, Division PMA, Dept. of Mechanical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium, 2000.
[51] M. Celanovic, “A lumped parameter electromechanical model for describing the nonlinear behavior of piezoelectric actuators,” Journal of Dynamic Systems, Measurement, Control, vol. 119, p. 478-485, Sep. 1997.
[52] T. Chiew, Z. Jamaludin, A. B. Hashim, N. Rafan, and L. Abdullah, “Identification of friction models for precise positioning system in machine tools,” Procedia Engineering, vol. 53, pp. 569-578, 2013.
[53] M. Ruderman, F. Hoffmann, and T. Bertram, “Modeling and identification of elastic robot joints with hysteresis and backlash,” IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 3840-3847, Oct. 2009.
[54] A. B. Farid and J. Swevers, “Characterization of friction force dynamics,” IEEE Control Systems Magazine, vol. 28, no. 6, pp. 64-81, Nov. 2008.
[55] V. Lampaert, A. B. Farid, and J. Swevers, “A generalized Maxwell-slip friction model appropriate for control purposes,” in Proceedings of 2003 IEEE International Workshop on Workload Characterization, St. Petersburg, Russia, 2003, pp. 1170–1178.
[56] A. B. Farid and J. Swevers, “Characterization of friction force dynamics,” IEEE Control Systems Magazine, vol. 28, no. 6, pp. 64-81, Dec. 2008.
[57] 王啟睿,自抗擾控制技術於捲繞系統之應用與比較,碩士論文,國立成功大學電機工程學系,台灣,2018。
[58] J. Han, “A class of extended state observers for uncertain systems,” Control and Decision, vol. 10, no. 1, pp. 85-88, 1995.
[59] J. Li, Y. Xia, X. Qi, Z. Gao, K. Chang, and F. Pu, “Absolute stability analysis of non-linear active disturbance rejection control for single-input–single-output systems via the circle criterion method,” IET Control Theory & Applications, vol. 9, no. 15, pp. 2320-2329, Oct. 2015.
[60] E. H. E. Yaagoubi, A. E. Assoudi, and H. Hammouri, “High gain observer: attenuation of the peak phenomena,” in Proceedings of the 2004 American Control Conference, Boston, Massachusetts, USA, 2004, pp. 4393-4397.
[61] X. Li and S. Li, “Extended state observer based adaptive control scheme for PMSM system,” in Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 2014, pp. 8074-8079.
[62] Y. Xia, Z. Zhu, and M. Fu, “Back-stepping sliding mode control for missile systems based on an extended state observer,” IET Control Theory & Applications, vol. 5, no. 1, pp. 93-102, Jan. 2011.
[63] T. Floquet, C. Edwards, and S. K. Spurgeon, “On sliding mode observers for systems with unknown inputs,” in Processings of International Workshop on Variable Structure Systems, Alghero, Sardinia, Italy, 2006, pp. 638-656.
[64] V. T. Haimo, “Finite time controllers,” SIAM Journal on Control and Optimization, vol. 24, no. 4, pp. 760-770, Jul. 1986.
[65] 林宏憲,應用基於NURBS之強健遞迴模糊類神經網路干擾補償於動態快速非奇異終端滑模控制之循跡精度改善,碩士論文,國立成功大學電機工程學系,台灣,2018。
[66] 蔡維哲,基於適應性非線性滑模控制之循跡精度改善研究,碩士論文,國立成功大學電機工程學系,台灣,2017。
[67] B. Egardt, Stability of Adaptive Controllers. New York : Springer, 1979.
[68] S. Nicosia and P. Tomei, “Model reference adaptive control algorithms for industrial robots,” Automatica, vol. 20, no. 5, pp. 635-644, Sep. 1984.
[69] R. Lozano, Adaptive control. London : Springer, 1998.
[70] J. J. E. Slotine and W. Li, Applied Nonlinear Control. New Jersey : Prentice Hall, 1991.
[71] Carmen Chicone, Ordinary Differential Equations with Applications, Text in Applied Mathematics, New York : Spring-Verlag, 1999.
[72] J. P. Su and C. C. Wang, “Complementary sliding control of non-linear systems,” International Journal of Control, vol. 75, no. 5, pp. 360-368, Mar. 2002.
[73] M. Petko, G. Karpiel, K. Gac, G. Góra, K. Kobus, and J. Ochoński, “Trajectory tracking controller of the hybrid robot for milling,” Mechatronics, vol. 37, pp. 100-111, Aug. 2016.