簡易檢索 / 詳目顯示

研究生: 曾冠陸
Tseng, Kuan-Lu
論文名稱: 工廠自動化用非接觸式線型感應饋電軌道系統之異常個案研析
Study on Operational Fault Cases of Contactless Linear Inductive Power Track System for Factory Automation
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 71
中文關鍵詞: 工廠自動化非接觸式線型感應饋電軌道異常個案研析
外文關鍵詞: factory automation, contactless power system, case study on fault
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係研究產業界用於工廠自動化設備供電系統之非接觸式線型感應饋電軌道系統,針對實務應用上所發生的異常現象提出探討和改善方案。由於非接觸式線型感應饋電軌道系統之架構特性,初級側變流器與次級側諧振電路及交流-直流轉換器並無實體連結,當次級側電路出現過載或溫升等異常時,變流器無法立即停止供電,造成取電線圈和諧振電路繼續提供能量,使得異常持續惡化。因此,變流器與次級側電路必須能夠雙向溝通,即時反應各種異常狀況。而在次級側諧振電路與交流-直流轉換器的設計上,則利用電路實測與軟體模擬方式探討其過電壓的異常保護機制,並分別從電壓控制方式和保護元件特性進行分析,檢討電路保護機制的功能性與適用性。另外,本文也提出初級側饋電纜線高頻電流所造成周圍金屬機構的異常感電和電弧破壞現象,經過實驗分析與改善後,已確實能夠有效提升非接觸饋電系統在使用上的安全性。

    This thesis is to study the abnormal fault of contactless linear inductive power track system for automated application in the factory. Summarizes the abnormal cases for three types and proposes the solutions. First, the primary side of the contactless power system is separate from the secondary side. In case of the secondary circuit is overvoltage or overheat, the primary inverter could not be shutdown immediately. The pick up coil induces the voltage continuously and worsen the situation. Therefore, the system must have the capability of communication between the primary side and secondary side. Another two types are the mistake designs of the resonance circuit, AC to DC converter in the secondary side to cause overvoltage and the current of the litz wire induces the flashover in the metal rail. The causes of the system abnormalities have been found out through the test and experimental data. The abnormal fault of system can be improved.

    目錄 頁數 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 研究動機 1 1-2 研究背景 2 1-3 研究方法 7 1-4 論文大綱 8 第二章 工廠自動化之非接觸饋電軌道系統 10 2-1 前言 10 2-2 非接觸式電能傳輸原理 10 2-3 工廠自動化常見之非接觸饋電軌道型式 12 2-4 磁路分析與磁通密度模擬 15 2-5 集膚效應對饋電纜線之影響 20 2-5-1 集膚效應 20 2-5-2 饋電纜線結構 22 第三章 個案(一):次級側交流-直流轉換器異常分析與改善方案 23 3-1 前言 23 3-2 個案異常事故描述 23 3-3 交流-直流轉換器電路架構與特性 25 3-3-1 硬體電路架構 25 3-3-2 交流-直流轉換器之整流分析 26 3-3-3 交流-直流轉換器之電壓調整分析 28 3-4 異常原因分析 31 3-5 變阻器過電壓測試 33 3-6 次級側交流-直流轉換器改善對策 35 第四章 個案(二):移動載具之軌道機構異常感電與改善方案 38 4-1 前言 38 4-2 移動載具之軌道架構 38 4-3 異常描述與實驗分析 40 4-3-1 初級側饋電纜線(Litz wire)磁場感應實驗 40 4-3-2 材質導磁係數與溫度變化特性實驗 41 4-3-3 軌道機構材質與溫度量測實驗 41 4-3-4 感應電流來源實驗 42 4-4 軌道機構磁場模擬與分析 43 4-5 軌道感應電壓量測與分析 45 4-6 軌道電壓放電模式分析及改善方法 47 第五章 個案(三):次級側諧振電路異常分析與雙向溝通機制建立 51 5-1 前言 51 5-2 整體系統架構概述 51 5-3 異常狀態描述 52 5-4 原因分析與實驗測試 54 5-4-1 系統運轉之接點溫度變化實驗 55 5-4-2 諧振電路模組底板加熱實驗 56 5-4-3 諧振電容端子接點鬆脫實驗 56 5-4-4 諧振電容直接加熱實驗 57 5-5 諧振電路模組機構設計改善與雙向溝通機制 57 5-5-1模組底板材質改善 58 5-5-2元件端子接點改善 59 5-5-3改善後之模組運轉溫度 60 5-5-4模組溫度異常警報之雙向溝通機制建立 61 第六章 結論與未來研究方向 65 6-1 結論 65 6-2 未來研究方向 66 參考文獻 67

    參考文獻
    [1]C. S. Lin, S. G. Lin, C. F. Chang, H. H. Li, and T. R. Chen, “Model of contactless power transfer system for linear track,” in Proc. IEEE PEDS, 2010, pp. 1075-1079.
    [2]G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contactless energy transfer system for a people mover system,” in Proc. IEEE ICPST, 2002, pp. 79-84.
    [3]J. Ploeg, A. C. M. Knaap, and D. J. Verburg, “ATS/AGV-design, implementation and evaluation of a high performance AGV,” in Proc. IEEE IVS, 2003, pp. 127-134.
    [4]J. Liang and Z. Rao, “Research and implementation of visual control technology with AGV,” in Proc. IEEE ICEICE, 2011, pp. 1588-1591.
    [5]J. Park, Y. Park, and S. W. Kim, “AGV parking system using artificial visual land-mark,” in Proc. IEEE ICCAS, 2008, pp. 1579-1582.
    [6]X. Liu and S. Y. R. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, Jan. 2007.
    [7]M. L. G. Kissin, H. Hao, and G. A. Covic, “A practical multiphase IPT system for AGV and roadway applications,” in Proc. IEEE ECCE, 2010, pp. 1844-1850.
    [8]C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
    [9]J. Huh, S. Lee, C. Park, G. H. Cho, and C. T. Rim, “High performance inductive power transfer system with narrow rail width for on-line electric vehicles,” in Proc. IEEE ECCE, 2010, pp. 647-651.
    [10]S. Li and X. Hou, “Research on the AGV based robot system used in substation inspection,” in Proc. IEEE ICPST, 2007, pp. 1-4.
    [11]J. Yu, P. Lou, X. Qian, and X. Wu, “An intelligent real-time monocular vision-based AGV system for accurate lane detecting,” in Proc. IEEE CCCM, 2008, pp. 28-33.
    [12]G. A. J. Elliott, J. T. Boys, and A. W. Green, “Magnetically coupled systems for power transfer to electric vehicles,” in Proc. IEEE PEDS, 2002, pp. 797-801.
    [13]J. Jia, W. Liu, and H. Wang, “Contactless power delivery system for the underground flat transit of mining,” in Proc. ICEMS, 2004, pp. 282-284.
    [14]CPS Presentation for Reference, VAHLE Inc., 2008.
    [15]Automated Material Handling System, DAIFUKU Inc., 2006.
    [16]M. H. Ryu, H. Y. Cha, Y. W. Park, and J. W. Baek, “Analysis of the contactless power transfer system using modeling and analysis of the contactless transformer,” in Proc. IEEE IECON, 2005, pp. 1036-1042.
    [17]S. C. Rho, S. H. Kim, Y. H. Ahn, and B. Kim, “A study on power transmission system using resonant frequency tracking method and contactless transformer with multiple primary winding,” in Proc. IEEE ICEMS, 2007, pp. 1635-1639.
    [18]R. Mecke and C. Rathge, “High frequency resonant inverter for contactless energy transmission over large air gap,” in Proc. IEEE PESC, 2004, pp. 1737-1743.
    [19]Y. Wu, L. Yan, and S. Xu, “Modeling and performance analysis of the new contactless power supply system,” in Proc. IEEE ICEMS, 2005, pp. 1983-1987.
    [20]H. L. Li, A. P. Hu, and G. A. Covic, “A power flow control method on primary side for a CPT system,” in Proc. IEEE IPEC, 2010, pp. 1050-1055.
    [21]C. H. Hu, C. H. Lai, W. R. Yang, C. F. Chang, and T. R. Chen, “Study of a contactless power transmission system,” in Proc. IEEE ISIE, 2008, pp. 293-298.
    [22]C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1 pp. 148-157, 2004.
    [23]CPS presentation for clean stocker, MIRLE Inc., 2008.
    [24]S. Hoshino, J. Ota, A. Shinozaki, and H. Hashimoto, “Comparison of an AGV transportation system by using the queuing network theory,” in Proc. IEEE IROS, 2005, pp. 3785-3790.
    [25]K. W. Klontz, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “Contactless power delivery system for mining applications,” in Proc. IEEE IAS, pp. 1263-1269.
    [26]H. Ayano, K. Yamamoto, N. Hino, and I. Yamato, “Highly efficient contactless electrical energy transmission system,” in Proc. IEEE IECON, 2003, pp. 1364-1369.
    [27]B. M. Song, R. Kratz, and S. Gurol, “Contactless inductive power pickup system for maglev applications,” in Proc. IEEE IAS, 2002, pp. 1586-1591.
    [28]W. Xie, H. Li, and C. Wang, “Performance analysis of sliding transformer in contactless inductive power transfer system,” in Proc. ICEMS, 2009, pp. 4360-4363.
    [29]D. Wesemann, S. Witte, and J. S. Michels, “Effects of multiple loads in a contactless, inductively coupled linear power transfer system,” in Proc. ELECO, 2009, pp. I-54-I-59.
    [30]J. M. Barnard, J. A. Ferreira, and J. D. Wyk, “Optimising sliding transformers for contactless power transmission systems,” in Proc. IEEE PESC, 2002, pp. 245-251.
    [31]J. M. Barnard, J. A. Ferreira, and J. D. Wyk, “Sliding transformers for linear contactless power delivery,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 774-779, Dec. 1997.
    [32]A. Kumar and A. P. Hu, “Linearly tuned wireless power pick-up,” in Proc. IEEE ICSET, 2011, pp. 1-6.
    [33]U. K. Madawala, D. Thrimawithana, and N. Kularathna, “An ICPT-supercapacitor technology for contactless power transfer with surge suppression,” in Proc. IEEE IECON, 2006, pp. 964-969.
    [34]S. Raabe, G. A. Covic, J. T. Boys, C. Pennalligen, and P. Shekar, “Practical considerations in the design of multiphase pick-ups for contactless power transfer systems,” in Proc. IEEE IECON, 2010, pp. 753-758.
    [35]D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. IPEC, 2005, pp. 1133-1136.
    [36]童子原,電動載具用非接觸式感應饋電軌道:高功率交流正弦激勵電源系統之研製,國立成功大學電機工程學系碩士論文,2010年。
    [37]Contactless power system, VAHLE Inc., 2008.
    [38]High efficiency inductive power distribution technology, DAIFUKU Inc., 2009.
    [39]Stephen J. Chapman, Electric Machinery Fundamentals. 1987, 登文書局.
    [40]陳勝建,陣列區塊感應結構應用於非接觸式饋電軌道之研究,國立成功大學電機工程學系碩士論文,2009年。
    [41]張孟詔,電動載具用非接觸式感應饋電軌道:載具側三埠式充電/供電系統,國立成功大學電機工程學系碩士論文,2010年。
    [42]詹凱筌,具可拆卸機制封閉型耦合結構之非接觸式線型感應饋電軌道系統,國立成功大學電機工程學系碩士論文,2012年。
    [43]壓敏電阻之過電壓保護解決方案,興勤電子公司,2012年。
    [44]The new design of clean stocker, MIRLE Inc., 2008.
    [45]Rectifier and LC unit design of high efficiency inductive power distribution, HITACHI Inc., 2010.
    [46]高性能工程塑膠材料特性表,鉅盛工程塑膠公司,2010年。

    下載圖示 校內:2018-08-28公開
    校外:2018-08-28公開
    QR CODE