| 研究生: |
張哲倫 Chang, Che-Lun |
|---|---|
| 論文名稱: |
使用超音波噴塗熱裂解沉積法研製非晶型氧化銦鎵鋅透明薄膜電晶體 A Study of Amorphous InGaZnO Transparent Thin Film Transistors Using Ultrasonic Spray Pyrolysis Deposition |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 共同指導教授: |
劉漢胤
Liu, Han-Yin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 非晶氧化銦鎵鋅 、透明薄膜電晶體 、超音波噴塗熱裂解法 |
| 外文關鍵詞: | amorphous IGZO, transparent thin film transistors, ultrasonic spray pyrolysis deposition |
| 相關次數: | 點閱:80 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文在於探討利用超音波噴塗熱裂解沉積法製備非晶氧化銦鎵鋅透明薄膜電晶體。超音波噴塗熱裂解沉積法是一種高品質、低成本、非真空製程和利於調整摻雜濃度的沉積技術。我們利用此方法製備介電層與主動層。在電極材料上,我們選擇使用透明氧化物-氧化鋁鋅。氧化鋁鋅擁有高透光度、高導電率和成本較低等優點,且較氧化銦錫穩定。本研究利用此沉積法成功製作底閘極結構之透明薄膜電晶體。
為了瞭解氧化銦鎵鋅的結構、化學組成、粗糙度、結晶性和透光度,本研究利用了(一)掃描式電子顯微鏡、(二)X射線繞射分析、(三)原子力顯微鏡、(四)X射線光電子能譜、(五)光致發光、(六)紫外光-可見光-近紅外光分光光譜儀。首先利用掃描式電子顯微鏡、X射線繞射分析和原子力顯微鏡確認氧化銦鎵鋅表面狀況及結晶性,再透過X射線光電子能譜確認化學組成及氧空缺的比例,接著與光致發光量測結果做比較。最後利用紫外光-可見光-近紅外光分光光譜儀量測製作完的透明薄膜電晶體之透光度。
運用超音波噴塗熱裂解沉積法製作完成非晶氧化銦鎵鋅透明薄膜電晶體後的電性表現上,電流開關比達108以上,次臨界擺幅為0.174 V/dec,電子移動率為7.64 cm2/V-s。而在穩定度的量測上,我們利用閘極加偏壓5伏特和 − 5伏特持續3000秒觀察此電晶體之穩定度。另外我們比較氧化銦鎵鋅薄膜中氧空缺含量對電性和穩定性的影響。為了瞭解非晶氧化銦鎵鋅透明薄膜電晶體之光響應,我們測量其在光波長250 nm至450 nm下之光響應程度,分析此薄膜之截止波段並推算出薄膜的能隙,最後比較透明氧化物電極和金屬電極對光響應之影響以及氧空缺含量對光響應之影響。
在本論文中,利用超音波霧化熱裂解沉積法製備非晶氧化銦鎵鋅透明薄膜電晶體,相對於其他真空或非真空製程方式在製程時間、花費成本上均有極大的優勢。電性表現、穩定性和光響應亦有良好的表現。而在氧空缺研究上,我們證明氧空缺對電晶體特性之影響。綜合電性表現和成本考量等因素,此沉積法在未來商業運用上擁有極大的優勢和發展。
This thesis mainly investigates the amorphous IGZO transparent thin film transistor (a-IGZO TTFT) deposited by ultrasonic spray pyrolysis method. Ultrasonic spray pyrolysis deposition (USPD) is a high quality, low cost, non-vacuum process and favorable to adjust the doping concentration of the deposition technology. We use this method to fabricate the dielectric layer and the active layer of TFT. On the electrodes material, we choose to use the transparent conduct oxide-alumina zinc (AZO). AZO has the advantages of high transparency, high conductivity and low cost, and is more stable than indium tin oxide (ITO). We successfully fabricated the bottom gate a-IGZO transparent thin film transistor by using USPD.
In order to understand the structure, chemical composition, roughness, crystallinity and transmittance of IGZO thin films. The (1) Scanning Electron Microscopy, (2) X-ray Diffraction analysis, (3) Atomic Force Microscopy, (4) X-ray Photoelectron Spectroscopy, (5) Photoluminescence, and (6) UV/VIS/NIR Spectrometers are adopted in this work. First, scanning electron microscopy, X-ray diffraction and atomic force microscopy were made use of confirming the surface, roughness and crystallinity of the IGZO thin films. Next, X-ray photoelectron spectroscopy was used to make sure the chemical composition and the ratio of oxygen vacancy content, and then compared with the results of photoluminescence measurements. Finally, UV/VIS/NIR spectrometers were utilized to measure the transmittance of the transparent thin film transistors.
On the electrical characteristics of a-IGZO TTFTs deposited by USPD, the on/off ratio is 108, the subthreshold swing is 0.174 V/dec, and mobility is 7.64 cm2/V-s. To measure the stability of the TTFTs, the gate bias voltage of 5 V and − 5 V was stressed during 3000 sec. In addition, we compare the influence of oxygen vacancy content in IGZO thin films on electrical characteristics and stability.
In order to understand the spectra response of a-IGZO TTFTs, we measured the responsivity with the range of wavelength from visible region (450 nm) to UV region (250 nm) and then we analyzed the cutoff wavelength to calculate the energy bandgap of the thin films in advance. At last, the influence of transparent oxide electrode and metal electrode on light responsivity and the influence of oxygen vacancy content on light responsivity are compared.
In this thesis, the fabrication of a-IGZO TTFTs by USPD has great advantages in process time and cost in comparison with other vacuum or non-vacuum process methods. The electrical characteristics, stability and light responsivity also have good performance. In the study of oxygen vacancy, we proved the influence of oxygen vacancy on transistor characteristics. Comprehensive electrical performance and cost considerations, this deposition in the future commercial use has a great advantage and development.
[1] P. G. Le Comber, W. E. Spear and A. Ghaith, "Amorphous silicon filed effect device and possible application," Electron Lett, vol. 15, pp. 179-181, Mar 1979.
[2] N. Ibaraki, "Low temperature poly-Si TFT technology," SID Intl Symp Digest Tech Papers, vol. 30, pp. 172-175, May 1999.
[3] K. Suzuki et al, "Low-temperature poly-silicon TFT technology and its application to 12.1-inch XGA," AMLCD'98 Diest, pp. 5-8, 1998.
[4] A. Facchetti, "π-Conjugated polymers for organic electronics and photovoltaic cell applications," Chem. Mater., pp. 733-758, Dec 2011.
[5] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, "Amorphous oxide semiconductors for high-performance flexible thin-film transistors," Japanese Journal of Applied Physics, vol. 45, pp. 4303-4308, May 2006.
[6] P. Barquinhaz, L. Pereira, G. Gonçalves, R. Martins and E. Fortunato, "The effect of deposition conditions and annealing on the performance of high-mobility GIZO TFTs," Electrochem. Solid-State Lett, vol. 11, pp. 248-251, Jun 2008.
[7] C. Avis and J. Jang, "High-performance solution processed oxide TFT with aluminum oxide gate dielectric fabricated by a sol–gel method," J. Mater. Chem., pp. 10649-10652, Jun 2011.
[8] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors.," Nature, vol. 432, pp. 488-492, Nov 2004.
[9] T. Kamiya, K.Nomura and H. Hosono, "Present status of amorphous In–Ga–Zn–O thin-film transistors," Sci. Technol. Adv. Mater, vol. 11, Sep 2010.
[10] E. Fortunato, P. Barquinha and R. Martins, "Oxide semiconductor thin film transistors: A review of recent advances," Advanced Material, vol. 24, pp. 2945-2986, Jun 2012.
[11] J. H. Lee, S. T. Wu and D. N. Liu, "Introduction to flat panel displays," Wiley West Sussex, 2008.
[12] D. Kim, C. Y. Koo, K. Song, Y. Jeong and J. Moon, "Compositional influence on sol-gel-derived amorphous oxide semiconductor thin film transistors," Appl. Phys. Lett.,vol. 95, Sep 2009.
[13] O. Zywitzki, G. Hoetzsch, F. Fietzke, and K. Goedicke, "Effect of the substrate temperature on the structure and properties of Al2O3 layers reactively deposited by pulsed magnetron sputtering," Surface and Coatings Technology, vol. 82, pp. 169-175, Jul 1996.
[14] M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, "Low temperature Al2O3 atomic layer deposition," Chem. Mater., pp. 639-645, Jan 2004.
[15] H. Hiramatsu, K. Ueda, H. Ohta, T. Kamiya, and M. Hirano, "Excitonic blue luminescence from p-LaCuOSe ∕ n-InGaZn5O8 light-emitting diode at room temperature," Appl. Phys. Lett., vol. 87, pp. 21107, Nov 2005.
[16] H. Yanagi, K. Ueda, H. Ohta, M. Orita, M. Hirano, H. Hosono, "Fabrication of all oxide transparent p–n homojunction using bipolar CuInO2 semiconducting oxide with delafossite structure," Solid State Communications, vol. 121, pp. 15-17, Dec 2001.
[17] D. S. Ginley and C. Bright, "Transparent conducting oxides," MRS bulletin, vol. 25, pp. 15-18, Aug 2000.
[18] M. C. Jun and J. H. Koh, "Effects of NIR annealing on the characteristics of al-doped ZnO thin films prepared by RF sputtering," Nanoscale Research Letters, pp. 294-301, Jun 2012.
[19] J. L. Wua, H. Y. Lin, B. Y. Su, Y. C. Chen, S. Y. Chu, S. Y. Liu, C. C. Chang and C. J. Wu, "Comparison of physical and electrical properties of GZO / ZnO buffer layer and GZO as source and drain electrodes of a-IGZO thin-film," Journal of Alloys and Compounds, vol. 592, pp. 35-41, Apr 2014.
[20] X. W. Ding, H. Zhang, J. H. Zhang, J. Li, W. M. Shi, X. Y. Jiang and Z. L. Zhang, "IGZO thin film transistors with Al2O3 gate insulators fabricated at different temperatures," Materials Science in Semiconductor Processing, vol. 29, pp. 69-75, Jan 2015.
[21] S. J. Kim, G. H. Kim, D. L. Kim, D. N. Kim, and H. J. Kim, "InGaZnO thin-film transistors with YHfZnO gate insulator by solution process.," Phys. Status Solidi A, vol. 207, pp. 1668-1671, Jul 2010.
[22] B. S. Yu and T. J. Ha, "High performance solution processed IGZO thin-film transistors with Al2O3 / BN composite dielectrics fabricated at low temperature," Phys. Status Solidi, vol. 215, pp. 215-220, Jun 2018.
[23] H. Y. Liu, W. C. Hsu, B. Y. Chou, Y. H. Wang, W. C. Sun, S. Y. Wei and S. M. Yu, "Al2O3 passivation layer for InGaN / GaN LED deposited by ultrasonic spray pyrolysis.," IEEE Photon. Technol. Lett, vol. 26, pp. 1243-1246, Apr 2014.
[24] Z. Zheng, Y. Zeng, R. Yao, Z. Q. Fang, H. K. Zhang, S. B. Hu, X. Q. Li, H. L. Ning, J. B. Peng, W. G. Xie and X. B. Lu, "All-sputtered, flexible, bottom-gate IGZO / Al2O3 bi-layer thin film transistors on PEN fabricated," J. Mater. Chem. C, pp. 7043-7050, Jun 2017.
[25] H. Pu, Q. Zhou, L. Yue and Q. Zhang, "Investigation of oxygen plasma treatment on the device performance of solution-processed a-IGZO thin film transistors," Applied Surface Science, vol. 283, pp. 722-726, Oct 2013.
[26] S. Hwang, J. H. Lee, C. H. Woo, J. Y. Lee and H. K. Cho, "Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors," Thin Solid Films, vol. 519, p. 5146–5149, May 2011.
[27] J. Yao, N. Xu, S. Deng, J. Chen, J.She and H. D.Shieh, "Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy," IEEE Transactions on Electron Devices, vol. 58, pp. 1121-1126, Mar 2011.